• Title/Summary/Keyword: spectral function

Search Result 822, Processing Time 0.025 seconds

Efficient Method for Recovering Spectral Reflectance Using Spectrum Characteristic Matrix (스펙트럼 특성행렬을 이용한 효율적인 반사 스펙트럼 복원 방법)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1439-1444
    • /
    • 2015
  • Measuring spectral reflectance can be regarded as obtaining inherent color parameters, and spectral reflectance has been used in image processing. Model-based spectrum recovering, one of the method for obtaining spectral reflectance, uses ordinary camera with multiple illuminations. Conventional model-based methods allow to recover spectral reflectance efficiently by using only a few parameters, however it requires some parameters such as power spectrum of illuminations and spectrum sensitivity of camera. In this paper, we propose an enhanced model-based spectrum recovering method without pre-measured parameters: power spectrum of illuminations and spectrum sensitivity of camera. Instead of measuring each parameters, spectral reflectance can be efficiently recovered by estimating and using the spectrum characteristic matrix which contains spectrum parameters: basis function, power spectrum of illumination, and spectrum sensitivity of camera. The spectrum characteristic matrix can be easily estimated using captured images from scenes with color checker under multiple illuminations. Additionally, we suggest fast recovering method preserving positive constraint of spectrum by nonnegative basis function of spectral reflectance. Results of our method showed accurately reconstructed spectral reflectance and fast constrained estimation with unmeasured camera and illumination. As our method could be conducted conveniently, measuring spectral reflectance is expected to be widely used.

Fast Scattered-Field Calculation using Windowed Green Functions (윈도우 그린함수를 이용한 고속 산란필드 계산)

  • 주세훈;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1122-1130
    • /
    • 2001
  • In this paper, by applying the spectral domain wavelet concept to Green function, a fast spectral domain calculation of scattered fields is proposed to get the solution for the radiation integral. The spectral domain wavelet transform to represent Green function is implemented equivalently in space via the constant-Q windowing technique. The radiation integral can be calculated efficiently in the spectral domain using the windowed Green function expanded by its eigen functions around the observation region. Finally, the same formulation as that of the conventional fast multipole method (FMM) is obtained through the windowed Green function and the spectral domain calculation of the radiation integral.

  • PDF

Multidimensional Spectral Estimation by Modal Decomposition

  • Ping, Liu-Wei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.33.5-33
    • /
    • 2001
  • We consider here the problem of spectral estimation of multidimensional wide sense stationary (WSS) random process. A method, employing a special difference equation of correlation function, is proposed to solve the problem of multidimensional spectral estimation. In this approach, the special difference equation of correlation function is derived by modal decomposition method. Maximum likelihood estimator and Kalman filter are used to estimate the model parameters of the difference equation and the decomposed spectral residues. An algorithm is presented to estimate the multidimensional spectral density. According to the result of the simulation, these methods are feasible to estimate the spectral density of WSS process, which is realized by finite dimensional multivariable lineal system driven by white noise.

  • PDF

Partial Spectrum Detection and Super-Gaussian Window Function for Ultrahigh-resolution Spectral-domain Optical Coherence Tomography with a Linear-k Spectrometer

  • Hyun-Ji, Lee;Sang-Won, Lee
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.73-82
    • /
    • 2023
  • In this study, we demonstrate ultrahigh-resolution spectral-domain optical coherence tomography with a 200-kHz line rate using a superluminescent diode with a -3-dB bandwidth of 100 nm at 849 nm. To increase the line rate, a subset of the total number of camera pixels is used. In addition, a partial-spectrum detection method is used to obtain OCT images within an imaging depth of 2.1 mm while maintaining ultrahigh axial resolution. The partially detected spectrum has a flat-topped intensity profile, and side lobes occur after fast Fourier transformation. Consequently, we propose and apply the super-Gaussian window function as a new window function, to reduce the side lobes and obtain a result that is close to that of the axial-resolution condition with no window function applied. Upon application of the super-Gaussian window function, the result is close to the ultrahigh axial resolution of 4.2 ㎛ in air, corresponding to 3.1 ㎛ in tissue (n = 1.35).

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

Classification of Precipitation Data Based on Smoothed Periodogram (평활된 주기도를 이용한 강수량자료의 군집화)

  • Park, Man-Sik;Kim, Hee-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.547-560
    • /
    • 2008
  • It is well known that spectral density function determines auto-covariance function of stationary time-series data and smoothed periodogram is a consistent estimator of spectral density function. Recently, Kim and Park (2007) showed that smoothed- periodogram based distances performs very well for the classification. In this paper, we introduce classification methods with smoothed periodogram and apply the approaches to the monthly precipitation measurements obtained from January, 1987 through December, 2007 at 22 locations in South Korea.

THE LIMITING SPECTRAL DISTRIBUTION FUNCTION OF LARGE DIMENSIONAL RANDOM MATERICES OF SAMPLE COVARIANCE TYPE

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.465-474
    • /
    • 1998
  • Results on the analytic behavior to the limiting spectral distribution of matrices of sample convariance type. studied in Marcenko and Pastur [2] are derived. using the Stieltjes transform it is shown that the limiting distrbution has a continuous derivative away from zero the derivative being analytic whenever it is positive and the behavior of it resembles the behavior of a square root function near the boundary of its support.

ANALYSIS OF THE BEHAVIOR OF LIMITING SPECTRAL DENSITY FUNCTION OF LARGE DIMENSIONAL RANDOM MATRICES

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.483-488
    • /
    • 2004
  • Results on the analytic behavior of the limiting spectral distribution of large dimensional random matrices, studied in Marcenko and Pastur [2], are derived. Using the Stieltjes transform, it is shown that the limiting distribution has a continuous derivative away from zero, the derivative being analytic whenever it is positive [3]. In the present paper, it is derived that the behavior of it resembles the behavior of a square root function near the boundary of its support.

A Study on Natural Convection from Two Cylinders in a Cavity

  • Mochimaru Yoshihiro;Bae Myung-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1773-1778
    • /
    • 2006
  • Steady-state natural convection heat transfer characteristics from cylinders in a multiply-connected bounded region are clarified. A spectral finite difference scheme (spectral decomposition of the system of partial differential equations, semi-implicit time integration) is applied in numerical analysis, with a boundary-fitted conformal coordinate system through a Jacobian elliptic function with a successive transformation to formulate a system of governing equations in terms of a stream function, vorticity and temperature. Multiplicity of the domain is expressed explicitly.

A Spectral Correlation Based Detection Method for Spectrum Sensing in Cognitive Radio

  • Han Ning;Song Jeong-Ig;Sohn Sung-Hwan;Kim Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.672-679
    • /
    • 2006
  • Cognitive radio, which is designed to dynamically adapt its transmission to the environments, is believed to be one of the fundamental techniques for future spectrum utilization. As the first step of cognitive radio, spectrum sensing is treated as the most important technique, through which cognition is well explained. In this paper, we propose a spectral correlation based detection method for spectrum sensing. An unlicensed secondary user system operating in TV broadcast bands is taken as an example. Based on the cyclostationarity of communication signals, spectral correlation function is used to minimize the effect of random noise and interference. Energy measurement and peak detection based criteria are proposed. Simulation results show that the proposed detection method outperforms the energy detection and is more suitable for spectrum sensing in cognitive radios.