• Title/Summary/Keyword: specific surface

Search Result 3,823, Processing Time 0.03 seconds

Development of Pd/TiO2 Catalysts with La2O3 Addition and Study on the Performance Improvement of H2 Oxidation at Room Temperature (La2O3가 첨가된 Pd/TiO2 촉매의 개발 및 H2 상온산화 반응에서의 성능 향상 연구)

  • Lee, Dong Yoon;Kim, Sung Chul;Lee, Sang Moon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.674-678
    • /
    • 2020
  • In this study, a Pd/TiO2 catalyst which oxidized H2 at room temperature without an additional energy source was prepared. And a specific surface area of TiO2 as a support was not proportional to H2 oxidation reaction performance of Pd/TiO2 catalyst. In addition La2O3 was added to Pd/TiO2 catalyst in order to evaluate the performance effect due to the change of catalysts physical properties. A Pd/La2O3-TiO2 was prepared by adding different amounts of La2O3 to TiO2 and CO chemisorption analysis was performed. Compared to the conversion rate (14% at 0.5% H2) of the Pd/TiO2(G) catalyst, the Pd/La2O3-TiO2 catalyst showed 74% which was improved by more than five times. It was found that the larger the metal dispersion of Pd as an active metal is, the more favorable to H2 oxidation reaction is. However, when the added La2O3 amount exceeded 10%, the catalyst performance decreased again. Finally, it was concluded that the physical properties of the Pd/La2O3-TiO2 catalyst have a dominant influence on the catalytic activity until 0.3~0.5% of injected H2 concentrations and the catalyst reaction rate was controlled by substance transfer from 1% or more concentrations of H2.

Characteristics of Low Temperature Desorption of Volatile Organic Compounds from Waste Activated Carbon in Cylindrical Cartridge (원통형 활성탄 카트리지 내 폐활성탄의 휘발성 유기화합물 저온 탈착 특성)

  • Kang, Sin-Wook;Lee, Seongwoo;Son, Doojeong;Han, Moonjo;Lee, Tae Ho;Hong, Sungoh
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.79-84
    • /
    • 2021
  • In this study, the waste activated carbon used in the painting process was filled into a cylindrical cartridge and the characteristics of desorption by low temperature gas were investigated. Adsorption and desorption experiments of toluene with activated carbon were conducted to determine the flow rate of desorption. In an experiment where desorption was performed while changing conditions at flow rates of 1, 2 and 4 ㎥ min-1, it was determined that 2 ㎥ min-1 was appropriate due to the high THC concentration and desorption time. In the early stage of the desorption of waste activated carbon, 2-butanone and MIBK (methyl isobutyl ketone) with a low boiling point were generated at a high rate in the gas component, and after that, the concentration of THC decreased and the BTX was desorbed at a high rate. The total calorific value of the gas component generated during the desorption of waste activated carbon was 316 kcal kg-1. From repeating the regeneration of waste activated carbon with toluene five times, it was observed that the iodine value and the specific surface area were relatively lower than that of new activated carbon. In the desorption experiment where two cylindrical cartridges were connected in series, the maximum THC concentration was about 470 ppm.

Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide (Mo-Al 복합 산화물의 질화반응 처리된 촉매상에서 암모니아 촉매 분해반응)

  • Baek, Seo-Hyeon;Youn, Kyunghee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.159-168
    • /
    • 2022
  • Catalytic activity in ammonia decomposition reaction was studied on Mo-Al nitride obtained through temperature programmed nitridation of calcined Mo-Al mixed oxide prepared by varying the MoO3 quantity in the range of 10-50 wt%. N2 sorption analysis, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction (H2-TPR), and transmission electron microscopy (TEM) to investigate the physicochemical properties of the prepared catalyst were performed. After calcination at 600 ℃, the XRD of Mo-Al oxide showed γ-Al2O3 and Al2(MoO4)3 phases, and the nitride after nitridation showed an amorphous form. The specific surface area after nitridation by topotactic transformation of MoO3 to nitride was increased due to the formation of Mo nitride, and the Mo nitride was observed to be supported on γ-Al2O3. As for the catalytic activity in the ammonia decomposition reaction, 40 wt% MoO3 showed the best activity, and as the nitridation time increases, the activity increased, and thus the activation energy decreased.

Comparison of Removal Efficiency of Mn-loaded Natural Zeolites and Red Mud for the Catalytic Ozonation of 2-Butanone

  • Park, Youna;Lee, Jung Eun;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.328-334
    • /
    • 2022
  • For the study of environmental application of natural zeolites (NZ) and red mud (RM), which are discharged from various industrial fields, the catalytic ozonation of 2-butaone (methyl ethyl ketone, MEK) was performed using the Mn-loaded NZ prepared according to the Mn content of 1, 3, 5, 7, and 10 wt%. By the addition of Mn to NZ, the BET (Brunaure-Emmett-Teller) specific surface area of Mn/NZ catalysts decreased while the ratio of Mn3+/[Mn3++Mn4+] intensively increased. Besides, the addition of Mn component to NZ increased the ratio of adsorbed oxygen (Oadsorbed) toward lattice oxygen (Olattice), Oadsorbed/Olattice from 0.076 of NZ to 0.465 of 10 wt% Mn/NZ according to the amount of Mn. It is known that the proportion of two species, Mn3+ and Oadsorbed, would greatly affect the catalytic activity. However, the balancing between the paired species, Mn3+ vs. Mn4+ and Oadsorbed vs. Olattice might be more essential for the catalytic ozonation of MEK at room temperature. Among the Mn-loaded NZ catalysts, the 3 wt% Mn/NZ showed the best activity for the removal of MEK and ozone. The 5, 7, and 10 wt% Mn/NZ catalysts are slightly inferior to the 3 wt% Mn/NZ. Compared to the pristine NZ, the Mn/NZ catalysts showed better activity for the catalytic ozonation of MEK. In addition, the 3 wt% Mn/NZ was confirmed to have the most available acid sites among them by the analysis of NH3-TPD (temperature programmed desorption). This might be the major reason for the best catalytic activity of 3 wt% Mn/NZ together with the adjusted distribution ratios of Mn3+/Mn4+ and Oadsorbed/Olattice. Considering the result of 3 wt% Mn/NZ, the 3 wt% Mn/RM was prepared to perform the catalytic activity for the removal of MEK and ozone, but the efficiency of 3 wt% Mn/RM was significantly lower than that of the 3 wt% Mn/NZ.

Enhanced Removal Efficiency of Zinc and Iron Ions Using By-Product of Achyanthes Japonica Stem (우슬 줄기 부산물을 이용한 아연과 철 이온의 제거효율 향상)

  • Choi, Suk Soon;Choi, Tay Ryeong;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.90-95
    • /
    • 2022
  • In the present work, biochar was prepared using Achyanthes japonica stem as a by-product of herbal medicine. In order to apply the prepared biochar to water treatment process, the adsorption characteristics of zinc and iron ions dissolved in water were investigated. When the experiments were performed for 2 h to remove 70 and 100 mg/L of zinc ions, the adsorption amounts of 32.3 and 31.0 mg/g were obtained, respectively. It was also found that the adsorption amount of Achyanthes japonica stem biochar for the removal process of zinc ion was three times higher than that of the activated carbon. In addition, when the experiments were performed for 2 h to treat 70 and 100 mg/L of iron ions, high adsorption amounts of 50.1 and 54.3 mg/g were achieved, respectively. In order to further enhance the removal efficiency of zinc and iron ions, a steam activation process was performed on the biochar of Achyanthes japonica stem. As a result, the removal efficiencies of 70 and 100 mg/L of zinc ions increased to 80 and 60%, respectively. Also, the removal efficiencies of 70 and 100 mg/L of iron ions were improved to 100 and 82%, respectively. In addition, when the biochar of Achyanthes japonica stem with a steam activation was compared with the untreated biochar of Achyanthes japonica stem, the specific surface area increased 37.3 times, and the total and macroporpous pore volumes were improved by 28.4 and 136 times, respectively. Therefore, the results can be used for economically and practically adsorbing zinc and iron ions contained in water.

Experimental Study on the Reological Properties of Carbon Nano Materials as Cement Composites (탄소계 나노소재를 적용한 시멘트 페이스트 복합체의 유변학적 특성에 대한 연구)

  • Kim, Won-Woo;Moon, Jae-Heum;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.227-234
    • /
    • 2022
  • In this study, the rheological properties of cement paste composites applied with carbon-based nano-materials were experimental analyzed. Flow table and rheological properties, compressive strength were measured in the cement paste using graphene oxide asqueous solution and carbon nanotube aqueous solution. When carbon nano-materials was mixed in an aqueous solution, flow decreased and plastic viscosity and shear stress were increased. In particular, graphene oxide rapidly increased the plastic viscosity and shear stress. In the case of carbon nanotube aqueous solution, when less than 0.2 % was mixed, the increase rate was low compared to graphene oxide. This is because the specific surface area of graphene, which is in the form of a plate, is large. The compressive strength showed a small amount in strength increase when graphene mix, and CNT had a strength about 112 % of OPC. Carbon-based nanomaterials, is considered that CNT are suitable more to be used construction materials. However, extra studies on the surfactant to be used for mixing proportion and dispersion will be needed.

A Study on the Collection and Analysis of Tire and Road Wear Particles(TRWPs) as Fine Dust Generated on the Roadside (도로변에서 발생되는 미세먼지로써 타이어와 도로 마모입자 채집과 분석 연구)

  • Kang, Tae-Woo;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.293-299
    • /
    • 2022
  • Recently, various stakeholder are interested in microplastic to cause pollution of the marine's ecosystem and effort to conduct study of product's life cycle to reduce pollution of marine's ecosystem. The micorplastic refer to materials of the nano- to micro- sized units and it can be classified into primary and secondary. The primary microplastic mean the manufactured for use in the specific field such as the microbead of the cosmetic or cleanser. also, secondary mean the unintentionally generated during use of the product such as the textile crumb by the doing the laundry. Tire and Road Wear Particles(TRWPs) are also defined as secondary microplastic. Typically, TRWPs are created by friction between the tread compound's rubber of the tire and the surface of the road du ring the driving cars. Most of the generated TRWPs exist on the roadside and some of them were carried to marine by the rainwater. In this study, we perform the quantitative analysis of the TRWPs existed in fine dust at the roadside. So, we collected the dust from the roadside in Chungcheongnam-do's C site with a movement of 1,300 cars per the hour. The collected samples were separated according to size and density. And shape analysis was performed using the Scanning Electron Microscope(SEM). We were possible to discover a lot of TRWPs at the fine dust of the 100 ± 20 ㎛. And we analysis it u sing the Thermo Gravimetric Analysis(TGA) and Gas Chromatography/Mass Spectrometer(GC/MS) for the quantitative components from the tire. As a result, it was confirmed that TRWPs generated from the roadside fine dust were included the 0.21 %, and the tire and road components in the generated TRWPs consisted of the 3:7 ratio.

Defect Inspection and Physical-parameter Measurement for Silicon Carbide Large-aperture Optical Satellite Telescope Mirrors Made by the Liquid-silicon Infiltration Method (액상 실리콘 침투법으로 제작된 대구경 위성 망원경용 SiC 반사경의 결함 검사와 물성 계수 측정)

  • Bae, Jong In;Kim, Jeong Won;Lee, Haeng Bok;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.218-229
    • /
    • 2022
  • We have investigated reliable inspection methods for finding the defects generated during the manufacturing process of lightweight, large-aperture satellite telescope mirrors using silicon carbide, and we have measured the basic physical properties of the mirrors. We applied the advanced ceramic material (ACM) method, a combined method using liquid-silicon penetration sintering and chemical vapor deposition for the carbon molded body, to manufacture four SiC mirrors of different sizes and shapes. We have provided the defect standards for the reflectors systematically by classifying the defects according to the size and shape of the mirrors, and have suggested effective nondestructive methods for mirror surface inspection and internal defect detection. In addition, we have analyzed the measurements of 14 physical parameters (including density, modulus of elasticity, specific heat, and heat-transfer coefficient) that are required to design the mirrors and to predict the mechanical and thermal stability of the final products. In particular, we have studied the detailed measurement methods and results for the elastic modulus, thermal expansion coefficient, and flexural strength to improve the reliability of mechanical property tests.

Quantitative precipitation estimation of X-band radar using empirical relationship (경험적 관계식을 이용한 X밴드 레이더의 정량적 강우 추정)

  • Song, Jae In;Lim, Sanghun;Cho, Yo Han;Jeong, Hyeon Gyo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.679-686
    • /
    • 2022
  • As the occurrences of flash floods have increased due to climate change, faster and more accurate precipitation observation using X-band radar has become important. Therefore, the Ministry of Environment installed two dual-pol X-band radars at Samcheok and Uljin. The radar data used in this study were obtained from two different elevation angles and composed to reduce the shielding effect. To obtain quantitative rainfall, quality control (QC), KDP retrieval, and Hybrid Surface Rainfall (HSR) methods were sequentially applied. To improve the accuracy of the quantitative precipitation estimation (QPE) of the X-band radar, we retrieved parameters for the relationship between rainfall rate and specific differential phase, which is commonly called the R-KDP relationship; hence, an empirical approach was developed using multiple rain gauges for those two radars. The newly suggested relationship, R = 27.4K0.81DP, slightly increased the correlation coefficient by 1% more than the relationship suggested by the previous study. The root mean square error significantly decreased from 3.88 mm/hr to 3.68 mm/hr, and the bias of the estimated precipitation also decreased from -1.72 mm/hr to -0.92 mm/hr for overall cases, showing the improvement of the new method.

Inundation Pattern Analysis of Excavation at Construction Site and Derivation of Diasaster Cause and Effect Using Fish-bone Diagram (굴착공사현장 침수양상 해석 및 어골도에 의한 침수피해 원인 및 결과 도출)

  • Yoo, Dong-Hyun;Song, Chang Geun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.84-91
    • /
    • 2021
  • In the 21st century, a number of storm and flood disasters caused by rapidly changing climate change is increasing, and the number of flood accidents at construction sites is also increasing. However, no specific reduction measures have been presented and thereby safety management to prevent flood accident need to be improved. Therefore, in this study, the inundation pattern by downpour at the excavation site was interpreted and the inundation risk quantification method was used to classify the risk magnitude. Finally, using the fish-bone diagram, we derived the major reasons of inundation accident at construction site systematically. The simulation results showed that the inundation depths of small-scale excavation sites and excavation sites exceeded 3 m due to the fluid flowing through the excavation surface. In addition, depending on the excavation site, a high velocity temporarily observed and decreased due to the storage effect, or high velocity surpassing 10 m/s continued. Since this type of flooding can pose a risk to most or all workers, if proper management measures are insufficient, fatal damage to life and property could occur. Consideration of the roots of these disasters is judged to be helpful in understanding the causes of inundation accidents that result in casualties and presenting accident reduction measures.