• Title/Summary/Keyword: specific modulus

Search Result 268, Processing Time 0.034 seconds

Preblending Effect of Biblends on Properties of the Carbon Black-Filled Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2001
  • A premixing effect for the properties of carbon black-filled rubber compounds was investigated using biblends of natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR). Degree of mixing of the biblends was controlled by preblending time of 0.0, 2.5, and 5.0 min. Mooney viscosities of the compounds decreased by increasing the preblending time. Of three carbon black-filled compounds of NR/SBR, NR/BR, and SBR/BR compounds, only the SBR/BR blends showed a specific cure characteristics depending on the preblending time. For the bound rubber composition, the NR content was higher than SBR and BR. The difference in the rubber composition ratio of the bound rubber became smaller with increasing the preblending time. Physical properties of the vulcanizates such as hardness, modulus, tensile property, abrasion loss, and tans were also compared. Differences in properties of the compounds were discussed with miscibility of the dissimilar rubbers and degree of mixing.

  • PDF

The physical properties and the dyeability of the easily dyeable polyester yarn under atmospheric pressure (상압가염형 폴리에스테르 섬유의 물성과 염색성)

  • 김태경;윤석환;신상엽;임용진;조규민
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.391-396
    • /
    • 2001
  • The physical properties and the dyeability of the easily dyeable polyester yarn(EDY) were investigated and compared with those of regular polyester (REG-PET). The EDY, copolymerized with small amount of polyethylene glycol(PEG), showed higher intensity of aliphatic CH peak in IR spectrum, lower density and lower compactness than those of the REG-PET from the analysis of IR, density gradient column and XRD respectively. In the physical properties, the EDY has lowers $T_g$, $T_m$, specific stress and initial modulus, and also has higher strain than that of the REG-PET The EDY can be dyed under atmospheric pressure and its dyeing Fate was faster than REG-PET due to low $T_d$, and this seems to be caused by the increased flexibility of Polymer chain in amorphous region of the EDY due to the copolymerization of PEG.

  • PDF

Identification of Cutting Mechanisms in Orthogonal Cutting of Glass Fiber Reinforced Composites

  • Choe Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.39-45
    • /
    • 2000
  • In recent years, composite materials such as fiber reinforced plastics (FRP) have gained considerable attention in the aircraft and automobile industries due to their light weight, high modulus and specific strength. In practice, control of chip formation appears to be the most serious problem since chip formation mechanism in composite machining has significant effects on the finished surface [1,2,3,4,5]. Current study will discuss frequency analysis based on autoregressive (AR) time series model and process characterization in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the different chip formation mechanisms and model coefficients are established.(omitted)

  • PDF

An Experimental Study on the Mixing and Mechanical Properties of Artificial Lightweight Aggregate(ALA) Concrete (인공경량골재 콘크리트의 배합과 역학적 성상에 관한 실험적 연구)

  • 김화중;김태섭;전명훈;안상건
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.99-104
    • /
    • 1991
  • It is necessary to generalize the use for structural ALA Concrete in our country, as increasing in the need for the development of ALA and the use of ALA Concrete which is related with the diminution of the self load and foundation section of structure responding to the realistic requirement against the decrease of natural aggregate and the high-rising and large-sizing of structures. This little study, therefore intended to help in the mixing design of concrete by considering the fundamental properties of ALA Concrete used with expanded clay, which is considered by acopting the experimental factors such as unit cement content, water cement ratio and the rate of fine aggregate. By considering the results of this experiment, it has difficulty in getting expected slump with the unit water content of normal concrete because of the large absorption of lightweight aggregate, and because the weight of unit volume and specific gravity ALA Concrete are small it appears that the strength and Elastic Modulus of that are small too and that it is more ductile than normal concrete.

  • PDF

Development of lightweight Fly ash-Plastic Aggregate (석탄회 및 폐플라스틱을 이용한 인공경량합성골재의 개발)

  • Jo Byung Wan;Park Seung Kook;Park Jong Bin;Jansen Daniel C.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.380-383
    • /
    • 2004
  • The coarse and fine aggregates that make up the majority of concrete are resources. But, the raw naturals that make up concrete are our earth's resources and there is not a replenishable stock. Also industrial waste and life waste leaped into a pollution source. Therefore, as construction continue, quarries are exhausted and new sources must be discovered. The purpose of this paper is to investigate an application of recycled coal ash plastics in the construction field. The study examined the physical and mechanical properties of recycled coal ash plastics aggregate. In the results, although the absorption and specific gravity of SLAs increases slightly as the fly ash content increases, the compressive strength and modulus of elastic of concrete made with SLAs remains relatively constant when mortar type and volume fraction are also held constant. These values are always lower than natural-weight aggregate concretes.

  • PDF

Wear and Friction Characteristics of SiC Reinforced Aluminium 6061 Alloy Composites (SiC 보강 A16061 복합재료의 마멸 및 마찰특성에 관한 연구)

  • 권재도;안정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2122-2132
    • /
    • 1995
  • There are some cases which require to grasp the abrasion resistance property in the fields of the high-technology to be required the high specific strength and modulus. In this study, wear test with the various test temperature and velocity were performed in the SiCw/A16061 composite and A16061 matrix using the wear test machine of the ring-on-disc type. As the results, the friction and wear properties by various test temperature and velocity were examined. The worn surface has observed by scanning electron microscope in order to examine the wear mechanism.

고무의 전단 탄성을 이용한 방진마운트 개발

  • 윤승원;이성춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.782-787
    • /
    • 1995
  • Rubber isolator has many advantages compared with steel spring mount. Rubber has high internal damping and can be formed various shape depending on specific purpose. On the contrary, low modulus of elasticity of rubber results the instability of rubber isolator by buckling phenomenon. This paper presents the development of shear type rubber isolator for industrial application by using shear rigidity property of rubber. The static load-deflection characteristics of developed isolator has been analyzed by the FEM. Consequently, the static load testing and a measure of the effectiveness of a vibration isolator in terms of force transissibility for developed isolator have been carried out.

  • PDF

Role of ingredients for high strength and high performance concrete - A review

  • Parande, A.K.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.151-162
    • /
    • 2013
  • The performance characteristics of high-strength and high-performance concrete are discussed in this review. Recent developments in the field of high-performance concrete marked a giant step forward in high-tech construction materials with enhanced durability, high compressive strength and high modulus of elasticity particularly for industrial applications. There is a growing awareness that specifications requiring high compressive strength make sense only when there are specific strength design advantages. HPC today employs blended cements that include silica fume, fly ash and ground granulated blast-furnace slag. In typical formulations, these cementitious materials can exceed 25% of the total cement by weight. Silica fume contributes to strength and durability; and fly ash and slag cement to better finish, decreased permeability, and increased resistance to chemical attack. The influences of various mineral admixtures such as fly ash, silica fume, micro silica, slag etc. on the performance of high-strength concrete are discussed.

Nanocrystalline Materials-an Overview

  • Suryanarayana, C.
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.233-245
    • /
    • 1996
  • Nanocrystalline materials, with a grain size of typically <100 nm, are a new class of materials with properties vastly different from and often superior to those of the conventional coarse-grained materials. These materials can be synthesized by a number of different techniques and the grain size, morphology, and composition can be controlled by controlling the process parameters. In comparison to the coarse-grained materials, nanocrystalline materials show higher strength and hardness, enhanced diffusivity, improved ductility/toughness, reduced, density, reduced elastic modulus, higher electrical resistivity, increased specific heat, higher coefficient of thermal expansion, lower thermal conductivity, and superior soft and hard magnetic properties. Limited quantities of these materials are presently produced and marketed in the US, Canada, and elsewhere. Applications for these materials are being actively explored. The present article discusses the synthesis, structure, thermal stability, properties, and potential application of nanocrystalline materials.

  • PDF

Applications of Carbon Fiber to the Aerospace (탄소섬유의 항공우주 분야 적용)

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.511-514
    • /
    • 2011
  • This paper investigates applications mainly to the aerospace area. Even though the carbon fiber has an excellent properties, it has not been much used in the aircraft, etc, because of the cost and technology. But in these days, the properties are improved and the cost is down, using the carbon fibers are increasing every field.

  • PDF