• Title/Summary/Keyword: specific field

Search Result 3,177, Processing Time 0.033 seconds

A Study on the Characteristics by Keyword Types in the Intellectual Structure Analysis Based on Co-word Analysis: Focusing on Overseas Open Access Field (동시출현단어 분석에 기초한 지적구조 분석에서 키워드 유형별 특성에 관한 연구 - 국외 오픈액세스 분야를 중심으로 -)

  • Kim, Pan Jun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.3
    • /
    • pp.103-129
    • /
    • 2021
  • This study examined the characteristics of two keyword types expressing the topics in the intellectual structure analysis based on the co-word analysis, focused on overseas open access field. Specifically, the keyword set extracted from the LISTA database in the field of library and information science was divided into two types (controlled keywords and uncontrolled keywords), and the results of performing intellectual structure analysis based on co-word analysis were compared. As a result, the two keyword types showed significant differences by keyword sets, research maps and influences, and periods. Therefore, in intellectual structure analysis based on co-word analysis, the characteristics of each keyword type should be considered according to the purpose of the study. In other words, it would be more appropriate to use controlled keywords for the purpose of examining the overall research trend in a specific field from the perspective of the entire academic field, and to use uncontrolled keywords for the purpose of identifying detailed trends by research area from the perspective of the specific field. In addition, for a comprehensive intellectual structure analysis that reflects both viewpoints, it can be said that it is most desirable to compare and analyze the results of using controlled keywords and uncontrolled keywords individually.

Surface structure modification of vertically-aligned carbon nanotubes and their characterization of field emission property

  • adil, Hawsawi;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.159-159
    • /
    • 2016
  • Vertically-aligned carbon nanotubes (VCNT) have attracted much attention due to their unique structural, mechanical and electronic properties, and possess many advantages for a wide range of multifunctional applications such as field emission displays, heat dissipation and potential energy conversion devices. Surface modification of the VCNT plays a fundamental role to meet specific demands for the applications and control their surface property. Recent studies have been focused on the improvement of the electron emission property and the structural modification of CNTs to enable the mass fabrication, since the VCNT considered as an ideal candidate for various field emission applications such as lamps and flat panel display devices, X-ray tubes, vacuum gauges, and microwave amplifiers. Here, we investigate the effect of surface morphology of the VCNT by water vapor exposure and coating materials on field emission property. VCNT with various height were prepared by thermal chemical vapor deposition: short-length around $200{\mu}m$, medium-length around $500{\mu}m$, and long-length around 1 mm. The surface morphology is modified by water vapor exposure by adjusting exposure time and temperature with ranges from 2 to 10 min and from 60 to 120oC, respectively. Thin films of SiO2 and W are coated on the structure-modified VCNT to confirm the effect of coated materials on field emission properties. As a result, the surface morphology of VCNT dramatically changes with increasing temperature and exposure time. Especially, the shorter VCNT change their surface morphology most rapidly. The difference of field emission property depending on the coating materials is discussed from the point of work function and field concentration factor based on Fowler-Nordheim tunneling.

  • PDF

Fabrication of carbon nanotube fibers with nanoscale tips and their field emission properties

  • Shin, Dong-Hoon;Song, Ye-Nan;Sun, Yu-Ning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.468-468
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been considered as one of the promising candidate for next-generation field emitters because of their unique properties, such as high field enhancement factor, good mechanical strength, and excellent chemical stability. So far, a lot of researchers have been interested in field emission properties of CNT itself. However, it is necessary to study proper field emitter shapes, as well as the fundamental properties of CNTs, to apply CNTs to real devices. For example, specific applications, such as x-ray sources, e-beam sources, and microwave amplifiers, need to get a focused electron beam from the field emitters. If we use planar-typed CNT emitters, it will need several focal lenses to reduce a size of electron beam. On the other hand, the point-typed CNT emitters can be an effective way to get a focused electron beam using a simple technique. Here, we introduce a fabrication of CNT fibers with nanoscale point tips which can be used as a point-typed emitter. The emitter made by the CNT fibers showed very low turn-on electric field, high current density, and large enhancement factor. In addition, it showed stable emission current during long operation period. The high performance of CNT point emitter indicated the potential e-beam source candidate for the applications requiring small electron beam size.

  • PDF

Vertical β-Ga2O3 Schottky Barrier Diodes with High-κ Dielectric Field Plate (고유전율 필드 플레이트를 적용한 β-Ga2O3 쇼트키 장벽 다이오드)

  • Se-Rim Park;Tae-Hee Lee;Hui-Cheol Kim;Min-Yeong Kim;Soo-Young Moon;Hee-Jae Lee;Dong-Wook Byun;Geon-Hee Lee;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.298-302
    • /
    • 2023
  • In this paper, we discussed the effect of field plate dielectric materials such as silicon dioxide (SiO2), aluminum oxide (Al2O3), and hafnium oxide (HfO2) on the breakdown characteristics of β-Ga2O3 Schottky barrier diodes (SBDs). The breakdown voltage (BV) of the SBDs with a field plate was higher than that of SBDs without a field plate. The higher dielectric constant of HfO2 contributed to the superior reduction in electric field concentration at the Schottky junction edge from 5.4 to 2.4 MV/cm. The SBDs with HfO2 field plate showed the highest BV of 720 V, and constant specific on-resistance (Ron,sp) of 5.6 mΩ·cm2, resulting in the highest Baliga's figure-of-merit (BFOM) of 92.0 MW/cm2. We also investigated the effect of dielectric thickness and field plate length on BV.

Improving Field Crop Classification Accuracy Using GLCM and SVM with UAV-Acquired Images

  • Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.93-101
    • /
    • 2024
  • Accurate field crop classification is essential for various agricultural applications, yet existing methods face challenges due to diverse crop types and complex field conditions. This study aimed to address these issues by combining support vector machine (SVM) models with multi-seasonal unmanned aerial vehicle (UAV) images, texture information extracted from Gray Level Co-occurrence Matrix (GLCM), and RGB spectral data. Twelve high-resolution UAV image captures spanned March-October 2021, while field surveys on three dates provided ground truth data. We focused on data from August (-A), September (-S), and October (-O) images and trained four support vector classifier (SVC) models (SVC-A, SVC-S, SVC-O, SVC-AS) using visual bands and eight GLCM features. Farm maps provided by the Ministry of Agriculture, Food and Rural Affairs proved efficient for open-field crop identification and served as a reference for accuracy comparison. Our analysis showcased the significant impact of hyperparameter tuning (C and gamma) on SVM model performance, requiring careful optimization for each scenario. Importantly, we identified models exhibiting distinct high-accuracy zones, with SVC-O trained on October data achieving the highest overall and individual crop classification accuracy. This success likely stems from its ability to capture distinct texture information from mature crops.Incorporating GLCM features proved highly effective for all models,significantly boosting classification accuracy.Among these features, homogeneity, entropy, and correlation consistently demonstrated the most impactful contribution. However, balancing accuracy with computational efficiency and feature selection remains crucial for practical application. Performance analysis revealed that SVC-O achieved exceptional results in overall and individual crop classification, while soybeans and rice were consistently classified well by all models. Challenges were encountered with cabbage due to its early growth stage and low field cover density. The study demonstrates the potential of utilizing farm maps and GLCM features in conjunction with SVM models for accurate field crop classification. Careful parameter tuning and model selection based on specific scenarios are key for optimizing performance in real-world applications.

Design of Acoustic Source Array Using the Concept of Holography Based on the Inverse Boundary Element Method (역 경계요소법에 기초한 음향 홀로그래피 개념에 따른 음원 어레이 설계)

  • Cho, Wan-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.260-267
    • /
    • 2009
  • It is very difficult to form a desired complex sound field at a designated region precisely as an application of acoustic arrays, which is one of important objects of array systems. To solve the problem, a filter design method was suggested, which employed the concept of an inverse method using the acoustical holography based on the boundary element method. In the acoustical holography used for the source identification, the measured field data are employed to reconstruct the vibro-acoustic parameters on the source surface. In the analogous problem of source array design, the desired field data at some specific points in the sound field was set as constraints and the volume velocity at the surface points of the source plane became the source signal to satisfy the desired sound field. In the filter design, the constraints for the desired sound field are set, first. The array source and given space are modelled by the boundary elements. Then, the desired source parameters are inversely calculated in a way similar to the holographic source identification method. As a test example, a target field comprised of a quiet region and a plane wave propagation region was simultaneously realized by using the array with 16 loudspeakers.

A Korean Document Sentiment Classification System based on Semantic Properties of Sentiment Words (감정 단어의 의미적 특성을 반영한 한국어 문서 감정분류 시스템)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper proposes how to improve performance of the Korean document sentiment-classification system using semantic properties of the sentiment words. A sentiment word means a word with sentiment, and sentiment features are defined by a set of the sentiment words which are important lexical resource for the sentiment classification. Sentiment feature represents different sentiment intensity in general field and in specific domain. In general field, we can estimate the sentiment intensity using a snippet from a search engine, while in specific domain, training data can be used for this estimation. When the sentiment intensity of the sentiment features are estimated, it is called semantic orientation and is used to estimate the sentiment intensity of the sentences in the text documents. After estimating sentiment intensity of the sentences, we apply that to the weights of sentiment features. In this paper, we evaluate our system in three different cases such as general, domain-specific, and general/domain-specific semantic orientation using support vector machine. Our experimental results show the improved performance in all cases, and, especially in general/domain-specific semantic orientation, our proposed method performs 3.1% better than a baseline system indexed by only content words.

MR Study of Wate Exchange and Cell Membrane Permeability in Rat Liver Cells Using a Tissue-Specific MR Contrast Agent (조직 특성 MR 조영제를 이용한 쥐의 간세포막의 물분자 교환 및 투과율의 MR 측정기법)

  • Yongmin Chang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • Purpose : A precise NMR technique for measuring the rate of water exchange and cell membrane permeability across the hepatocyte membrane using liver-specific MR contrast agent is described. Materials and Methods : The rat hepatocytes isolated by perfusion of the livers were used for the NMR measurements. All experiments were performed on an IBM field cycling relaxometer operating from 0.02MHz to 60 MHz proton Larmor frequency. spin-echo pulse sequence was empolyed to measure spin-lattice relaxation time, T1. The continuous distribution analysis of water proton T1 data from rat hepatocytes containing low concentrations of the liver specific contrast agent, Gd-EOB-DTPA, modeled by a general two compartment exchange model. Results : The mean residence time of water molecule inside the hepatocyte was approximately 250 msec. The lower limit for the permeability of the hepatocyte membrane was $(1.3{\pm}0.1){\;}{\times}{\;}10^{-3}cm/sec$. The CONTIN analysis, which seeks the natural distribution of relaxation times, reveals direct evidence of the effect of diffusive exchange. the diffusive water exchange is not small in the intracellular space in the case of hepatocytes. Conclusions : Gd-EOB-DTPA, when combined with continuous distribution analysis, provides a robust method to study water exchange and membrane permeability in hepatocytes. Water exchange in hepatocyte is much slower thatn that in red blood cells. Therefore, tissue-specific contrast agent may be used as a functional agent to give physiological information such as cell membrane permeability.

  • PDF

Development of Rapid Detection System for Small Hive Beetle (Aethina tumida) by using Ultra-Rapid PCR (초고속 유전자 증폭법을 이용한 벌집꼬마밑빠진벌레 (Aethina tumida)의 신속한 검출 기법 개발)

  • Kim, Jung-Min;Lim, Su-Jin;Tai, Truong A;Hong, Ki-Jeong;Yoon, Byoung-Su
    • Journal of Apiculture
    • /
    • v.32 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • For the Rapid detection of small hive beetle (SHB; Aethina tumida) and for the mass-survey against SHB invasion, SHB-specific ultra-rapid PCR system was developed. Three different pairs of Aethina tumida-specific primers were deduced from cytochrome oxidase subunit I (COI) gene in mitochondrial DNA of SHB. Using optimized SHB-specific ultra-rapid PCR, $2.1{\times}10^1$ molecules of COI gene belonged to SHB could be detected specifically and quantitatively within 18 minutes 40 seconds. For the purpose of the application in apiary field, a DNA extraction method from bee debris was separatedly developed. When $10^5$ SHB-specific COI molecules (1/1000 body of SHB larvae) are existed in 1g of bee debris, it could be verified inner 10 minutes as qualitative and quantitative manner. SHB-specific ultra-rapid PCR we proposed would be expected to apply widely, either in apiary field or laboratory, for the rapid detections and the control against SHB-invasion.

Fast Microchip Electrophoresis Using Field Strength Gradients for Single Nucleotide Polymorphism Identification of Cattle Breeds

  • Oh, Doo-Ri;Cheong, Il-Cheong;Lee, Hee-Gu;Eo, Seong-Kug;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1902-1906
    • /
    • 2010
  • A microchip electrophoresis (ME) method was developed using a programmed field strength gradients (PFSG) for the single nucleotide polymorphism (SNP) based fast identification of cattle breeds. Four different Korean cattle (Hanwoo) and Holstein SNP markers amplified by allele-specific polymerase chain reaction were separated in a glass microchip filled with 0.5% poly(ethyleneoxide) ($M_r$ = 8 000 000) by PFSG as follows: 750 V/cm for 0 - 14 s, 166.7 V/cm for 14 - 31 s, 83.3 V/cm for 31 - 46 s, and 750 V/cm for 46 - 100 s. The cattle breeds were clearly distinguished within 45 s. The ME-PFSG method was 7 times and 5 times faster than the constant electric field ME method and the capillary electrophoresis- PFSG method, respectively, with a high resolving power ($R_s$ = 5.05 - 9.98). The proposed methodology could be a powerful tool for the fast and simultaneous determination of SNP markers for various cattle breeds with high accuracy.