• Title/Summary/Keyword: speaker normalization

검색결과 46건 처리시간 0.02초

음성인식에서 화자 내 정규화를 위한 진폭 변경 방법 (An Amplitude Warping Approach to Intra-Speaker Normalization for Speech Recognition)

  • 김동현;홍광석
    • 인터넷정보학회논문지
    • /
    • 제4권3호
    • /
    • pp.9-14
    • /
    • 2003
  • 기존의 성도 정규화 방법은 화자 간 정규화의 정확성을 개선하기 위한 매우 좋은 방법이다. 본 논문에서는 피치 변경 발성에 기반을 둔 새로운 화자 내 warping 인수 추정 방법을 제안한다. 화자 내 피치 변경 발성은 성문과 성도에 의해 발생되는 음성의 음향학적 차이 때문에 음성의 특징 공간 분포는 다르게 나타날 것이다. 발성의 변동은 frequency 성분과 amplitude 성분의 두가지 유형이 있다. 성도 정규화는 화자 간 정규화 방법들 중에서 주파수 정규화 방법이다. 여기에서는 화자 내 정규화를 위하여 진폭 변동을 정규화하는 방법을 제안한다. 참조 피치와 입력 피치의 역비례 계산에 의해서 진폭 warping 인수를 결정하는 것이 가능하다. 성능 평가를 위한 인식 실험 결과 숫자와 단어 인식에서 0.4%∼2.3% 정도의 인식 오류가 감소되었다.

  • PDF

화자 정규화를 위한 새로운 파워 스펙트럼 Warping 방법 (A New Power Spectrum Warping Approach to Speaker Warping)

  • 유일수;김동주;노용완;홍광석
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.103-111
    • /
    • 2004
  • 화자 정규화 방법은 화자 독립 음성인식 시스템에서 음성 인식의 정확성을 높이기 위한 성공적인 방법으로 알려져 왔다. 널리 사용되는 화자 정규화 방법은 maximum likelihood 반의 주파수 warping 방법이다. 본 논문은 주파수 warping 보다 더 좋은 화자 정규화의 성능 개선을 위해 새로운 파워 스펙트럼 warping 방법을 제안한다. 파워 스펙트럼 warping은 멜 주파수 켑스트럼 분석(MFCC) 방법을 이용하며, MFCC 처리 단계에서 필터 뱅크의 파워 스펙트럼을 조절함으로써 화자 정규화를 수행하는 간단한 메커니즘으로 갖는다. 또한 본 논문은 파워 스펙트럼 warping과 주파수 warping 방법을 서로 결합한 hybrid VTN 방법을 제안한다. 본 논문의 실험은 baseline 시스템에 각 화자 정규화 방법을 적용하여 SKKU PBW DB에서 인식 성능을 비교 분석하였다. 실험 결과를 보면 baseline 시스템의 단어 인식 성능을 기준으로 주파수 warping은 2.06%, 파워 스펙트럼 warping은 3.05%, 그리고 hybrid VTN은 4.07%의 단어 에러 율의 감소를 보였다.

DHMM 음성 인식 시스템을 위한 양자화 기반의 화자 정규화 (Quantization Based Speaker Normalization for DHMM Speech Recognition System)

  • 신옥근
    • 한국음향학회지
    • /
    • 제22권4호
    • /
    • pp.299-307
    • /
    • 2003
  • 화자독립 음성인식기에서 화자사이의 성도 길이의 영향을 최소화시켜 인식 성능을 개선하는 화자 정규화에 대한 많은 연구가 있어 왔다. 본 연구에서는 벡터양자화기를 이용하여 화자 검증이 가능하다는 사실에 착안하여 벡터 양자화기를 이용한 비교적 간단한 선형 워핑 화자정규화방법을 제안한다. 제안하는 방법에서는 먼저 정규화에 이용될 최적의 코드북을 생성한 다음, 이 코드 북을 이용하여 화자의 선형 워핑계수를 추출하고 추출된 워핑계수는 멜 켑스트럼 추출시에 사용되는 멜스케일 필터뱅크를 워핑하기 위해 이용된다. 본고에서 제안한 워핑계수 추출 및 적용 방법의 성능을 확인하기 위해 이산 HMM을 이용한 13가지의 단음절 한글 숫자음 인식기를 이용하여 인식실험을 수행하였으며, 실험 결과 약 29%의 오인식률 감소를 보여 제안하는 화자 정규화방법이 다른 라인서치 워핑계수추출 방법보다 간단한 동시에 효용가치가 있음을 확인하였다.

한국어 운율구 기반의 피치궤적 변환의 통계적 접근 (Statistical Approaches to Convert Pitch Contour Based on Korean Prosodic Phrases)

  • Lee, Ki-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권1E호
    • /
    • pp.10-15
    • /
    • 2004
  • In performing speech conversion from a source speaker to a target speaker, it is important that the pitch contour of the source speakers utterance be converted into that of the target speaker, because pitch contour of a speech utterance plays an important role in expressing speaker's individuality and meaning of the utterance. This paper describes statistical algorithms of pitch contour conversion for Korean language. Pitch contour conversions are investigated at two 1 evels of prosodic phrases: intonational phrase and accentual phrase. The basic algorithm is a Gaussian normalization [7] in intonational phrase. The first presented algorithm is combined with a declination-line of pitch contour in an intonational phrase. The second one is Gaussian normalization within accentual phrases to compensate for local pitch variations. Experimental results show that the algorithm of Gaussian normalization within accentual phrases is significantly more accurate than the other two algorithms in intonational phrase.

음소 특성 정규화를 통한 화자 변화 검출 (Speaker Change Detection by Normalization of Phonetic Characteristics)

  • 김형순;박혜영;박선영
    • 대한음성학회지:말소리
    • /
    • 제47호
    • /
    • pp.97-107
    • /
    • 2003
  • Speaker change detection is to detect automatically a point of time at which speaker was replaced. Since feature parameters used for speaker change detection depend not only on speaker characteristics but also on phonetic characteristics, spoken contents included in the feature parameters inevitably causes performance degradation of speaker change detection. In this paper, to alleviate this problem, a method to normalize phonetic variations in speech feature parameters is proposed for emphasizing changes due to speaker characteristics. Experimental results show that the proposed method improves the performance of speaker change detection.

  • PDF

화자 불변 특징추출을 위한 스펙트럼 정규화 (Spectral Normalization for Speaker-Invariant Feature Extraction)

  • 오광철
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.238-241
    • /
    • 1993
  • We present a new method to normalize spectral variations of different speakers based on physiological studies of hearing. The proposed method uses the cochlear frequency map to warp the input speech spectra by interpolation or decimation. Using this normalization method, we can obtain much improved recognition results for speaker independent speech recognition.

  • PDF

화자독립 음성인식을 위한 GMM 기반 화자 정규화 (Speaker Normalization using Gaussian Mixture Model for Speaker Independent Speech Recognition)

  • 신옥근
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.437-442
    • /
    • 2005
  • 화자독립 음성인식기의 화자 정규화를 위해 GMM(Gaussian mixture model)분포를 이용하는 방법에 대해 실험한다. 이 방법은 벡터 양자화기를 이용한 선행 연구를 개선한 것으로, 정규화된 학습용 특징벡터들의 확률분포를 최적의 클러스터의 수를 갖는 GMM분포로 모델링한 다음, 이 분포를 이용하여 시험용화자의 워핑계수를 추정한다. 이 연구의 목적은 기존의 ML을 이용한 방법의 단점을 개선하는 동시에 벡터 양자화기를 이용한 선행연구와'soft decision'이라 불리는 확률 분포를 이용한 방법의 성능을 비교하는데 있다. TIMIT 코퍼스를 대상으로 한 음소 인식 실험에서 클러스터의 수를 적절한 크기로 설정한 GMM분포를 이용함으로써 벡터 양자화기를 이용한 방법에 비해 약간 나은 인식률을 얻을 수 있었다.

Pitch Contour Conversion Using Slanted Gaussian Normalization Based on Accentual Phrases

  • Lee, Ki-Young;Bae, Myung-Jin;Lee, Ho-Young;Kim, Jong-Kuk
    • 음성과학
    • /
    • 제11권1호
    • /
    • pp.31-42
    • /
    • 2004
  • This paper presents methods using Gaussian normalization for converting pitch contours based on prosodic phrases along with experimental tests on the Korean database of 16 declarative sentences and the first sentences of the story of 'The Three Little Pigs'. We propose a new conversion method using Gaussian normalization to the pitch deviation of pitch contour subtracted by partial declination lines: by using partial declination lines for each accentual phrase of pitch contour, we avoid the problem that a Gaussian normalization using average values and standard deviations of intonational phrase tends to lose individual local variability and thus cannot modify individual characteristics of pitch contour from a source speaker to a target speaker. From the results of the experiments, we show that this slanted Gaussian normalization using these declination lines subtracted from pitch contour of accentual phrases can modify pitch contour more accurately than other methods using Gaussian normalization.

  • PDF

화자 식별에서의 배경화자데이터를 이용한 히스토그램 등화 기법 (Histogram Equalization Using Background Speakers' Utterances for Speaker Identification)

  • 김명재;양일호;소병민;김민석;유하진
    • 말소리와 음성과학
    • /
    • 제4권2호
    • /
    • pp.79-86
    • /
    • 2012
  • In this paper, we propose a novel approach to improve histogram equalization for speaker identification. Our method collects all speech features of UBM training data to make a reference distribution. The ranks of the feature vectors are calculated in the sorted list of the collection of the UBM training data and the test data. We use the ranks to perform order-based histogram equalization. The proposed method improves the accuracy of the speaker recognition system with short utterances. We use four kinds of speech databases to evaluate the proposed speaker recognition system and compare the system with cepstral mean normalization (CMN), mean and variance normalization (MVN), and histogram equalization (HEQ). Our system reduced the relative error rate by 33.3% from the baseline system.

다수 투표 기반의 화자 식별을 위한 배경 화자 데이터의 퍼지 C-Means 중심을 이용한 히스토그램 등화기법 (Histogram Equalization Using Centroids of Fuzzy C-Means of Background Speakers' Utterances for Majority Voting Based Speaker Identification)

  • 김명재;양일호;유하진
    • 한국음향학회지
    • /
    • 제33권1호
    • /
    • pp.68-74
    • /
    • 2014
  • 이전 연구에서 퍼지 C-Means의 중심 데이터로 이루어진 보조 데이터를 이용한 히스토그램 등화기법을 제안하였다. 보조 데이터를 이용한 히스토그램 등화기법은 사용하는 참조 집합의 크기에 따라 화자 식별 성능에 영향을 받는다. 그러나 인식 시점에서 최적의 파라미터를 찾기는 어렵다. 이 문제를 해결하기 위해 본 논문에서는 화자 식별을 위한 다수 투표 방식에 기반을 둔 보조 데이터를 이용한 히스토그램 등화기법을 제안한다. 다수 투표 기반의 제안한 방법은 여러 종류의 보조 데이터를 이용한 히스토그램 등화기법으로 입력 음성을 분류한다. 본 연구에서 제안한 방법을 CMN(Cepstral Mean Normalization), MVN(Mean and Variance Normalization), HEQ(Histogram Equalization)와 같은 기존의 특징 정규화 방법 및 보조 데이터를 이용한 히스토그램 등화기법과 비교한다.