In this paper, we experimented with speaker change detection that uses a statistical method for NOD (News On Demand) service. A specified speaker's change can find out content of each data in speech if analysed because it means change of data contents in news data. Speaker change detection acts as preprocessor that divide input speech by speaker. This is an important preprocessor phase for speaker tracking. We detected speaker change using GLR(generalized likelihood ratio) distance base division and BIC (Bayesian information criterion) base division among matrix method. An experiment verified speaker change point using BIC base division after divide by speaker unit using GLR distance base method first. In the experimental result, FAR (False Alarm Rate) was 63.29 in high noise environment and FAR was 54.28 in low noise environment in MDR (Missed Detection Rate) 15% neighborhood.
Speaker change detection is to detect automatically a point of time at which speaker was replaced. Since feature parameters used for speaker change detection depend not only on speaker characteristics but also on phonetic characteristics, spoken contents included in the feature parameters inevitably causes performance degradation of speaker change detection. In this paper, to alleviate this problem, a method to normalize phonetic variations in speech feature parameters is proposed for emphasizing changes due to speaker characteristics. Experimental results show that the proposed method improves the performance of speaker change detection.
화자 전환 검출은 대화 중에 발성 화자가 다른 사람으로 바뀌는 시점을 검출하는 것을 의미한다. 이 과정에서 화자 중복, 화자 정보 표기의 부정확성, 데이터 불균형 등으로 화자가 바뀌는 순간을 검출하는 데 어려움이 발생한다. 본 논문에서는 이러한 문제를 해결하기 위해 음성 인식에 널리 사용되는 TIMIT 데이터를 가공하여 충분한 양의 훈련 데이터를 얻었으며, 화자가 겹치는지를 파악한 후에 화자 전환 여부를 판단하였다. 본 논문에서는 화자 겹침을 고려한 화자 전환 검출 시스템을 구축하기 위하여 다양한 접근법을 사용하여 성능을 평가하고 검증했다. 그 결과 화자 겹칩 영역을 제거하기 위해 X-Vector 구조와 유사한 형태의 검출 시스템과 화자 전환 검출 시스템을 모델링하기 위한 Bi-LSTM 모델을 제안하였다. 실험 결과 기준 시스템보다 상대적으로 각각 4.6 %, 13.8 % 성능 향상을 확인하였다. 또한, 실험 결과를 기반으로 텍스트 정보와 화자 정보 등을 고려한다면 좀 더 강인한 화자 전환 검출 시스템을 구축할 수 있을 것으로 판단한다.
Speaker change detection involves the identification of time indices of an audio stream, where the identity of the speaker changes. In this paper, we propose novel measures for the speaker change detection based on a graph-partitioning criterion over the pairwise distance matrix of feature-vector stream. Experiments on both synthetic and real-world data were performed and showed that the proposed approach yield promising results compared with the conventional statistical measures.
본 논문에서는 기존의 BIC(Bayesian Information Criterion) 기반 화자변화의 성능 향상을 위하여 GMM-UBM(Gaussian Mixture Model-Universal Background Model) 기반 KL(Kullback Leibler) 거리를 활용한 화자변화 검증을 제안하였다. 정보량의 차이에 민감한 기존의 BIC 기반 화자변화검출 알고리즘을 상대적으로 정보량 차이에 견인한 KL 거리 알고리즘으로 검증하였고, 정보량의 비대칭을 보상하기 위해서 GMM-UBM을 활용하였다. 기존의 BIC 기반 화자변화 검출은 1단계로 비유사도 d가 양수인 구간의 국소 최댓값인 지점을 화자변화 후보지점으로 검출하였고, 2단계로 검출된 화자변화 후보지점 중 ${\Delta}BIC$가 양수인 지점을 화자변화지점으로 결정하였다. 본 논문에서는 BIC 기반 화자변화 검출에 의해 결정된 화자변화지점에 대하여 GMM-UBM 기반 KL 거리 D가 문턱치(threshold)보다 높은 지점을 최종 화자변화 지점으로 검증하였다. 실험결과, MDR(Missed Detection Rate)이 0인 조건에서 문턱치 0.028일 때 FAR(False Alarm Rate) 60.4%로 성능이 향상되었다.
화자 분할 기술은 오디오 데이터로부터 자동적으로 화자 경계 구간을 검출하는 것이다. 화자 분할 방식은 화자에 대한 선행 지식 사용 여부에 따라 거리기반 방식과 모델기반 방식으로 나누어진다. 본 논문에서는 eigenvoice 기반의 화자가중치 거리를 이용한 화자 분할 방식을 도입하고, 이 방식을 대표적인 거리 기반 방식들과 비교한다. 또한, 화자가중치의 거리 측정 함수로 유클리드 거리와 cosine 유사도를 사용하여 화자 분할 성능을 비교하고, eigenvoice 방식에 의해 화자 적응된 모델들 사이의 직접적인 거리를 이용한 화자 분할 방식과의 비교를 통해 화자가중치 거리를 이용한 방식이 계산량면에서 효율적인 점을 검증한다.
본 논문에서는 여러 사람이 참여하는 영상 회의에서 입술 움직임 정보를 이용하여 화자를 검출하는 시스템을 구현하였다. 구현된 시스템은 얼굴색 정보와 형태 정보를 이용하여 각 사람의 얼굴 및 입술 영역을 검출한 후, 입술 영역에서 이전 프레임과의 변화량을 계산하여 화자를 검출한다. 검출된 화자를 클로즈업하기 위하여 두 대의 CCD카메라를 사용하였으며, RS-232C시리얼 포트를 이용하여 PTZ 카메라를 제어한다. 실험 결과 3인 이상의 입력 동영상에서 얼굴의 기울어짐에 무관하게 화자를 검출할 수 있었으며 최초 기준 영상에서 화자를 클로즈업하는데 약 4∼5초 정도의 시간이 소요되었다. 또한 320${\times}$240 크기의 얼굴 영역 화면과 전체적인 배경 화면을 동시에 제공하므로 영상회의 및 인터넷 방송 등과 같은 영상 전송 시스템에서 보다 효율적인 의사 전달이 가능하게 하였다.
본 논문에서는 방송 뉴스에서 화자 변화 검증 성능 향상을 위해서 입력소음음성 향상과 SNR(Signal to Noise Ratio)기반 가중 함수 $w_m$를 적용한 KL 거리 $D_s$를 실험하였다. GMM-UBM(Gaussian Mixture Model-Universal Background Model) 기반 KL(Kullback Leibler) 거리 D를 이용한 화자 변화 검증 시스템(실험 0)을 기본 시스템으로 한다. 실험 1은 실험 0의 입력소음음성 향상을 위해 MMSE Log-STSA(Minimum Mean Square Error Log-Spectral Amplitude Estimator)를 적용하였다. 실험 2는 실험 1의 기존 KL거리 D 대신에 $D_s$를 적용하였다. 실험 데이터베이스는 다양한 소음을 반영하기 위해 스포츠 뉴스와 실외 인터뷰를 중심으로 구축하였다. 실험은 화자 변화 정보의 누락을 막기 위해 MDR(Missed Detection Rate) 0%를 기준으로 하였다. 실험 0은 FAR(False Alarm Rate) 71.5%의 성능을 보였다. 실험 1은 FAR 67.3%로 실험0에 비해 4.2% 향상되었고, 실험 2는 FAR 60.7%로 10.8% 향상되었다.
모바일기기가 발달함에 따라 핸드폰에 수많은 기능들이 탑재되고 있다. 영상 통화 기능도 그 중 하나이다. 본 논문에서는 화자와 스마트폰 사이의 거리를 측정하기 위한 다중 색좌표계와 다중 임계치를 사용하는 방법을 제시한다. 첫 번째로 피부색의 색상정보에 근거하여 얼굴영역을 검출한다. 두 번째로 검출된 얼굴영역의 크기를 이용하여 스마트폰과 화자 사이의 거리를 측정한다. 특히 본 논문에서 제시하는 얼굴영역 검출 알고리즘 개발에 있어 고려한 점은 스마트폰의 기본기능과 함께 실시간으로 처리가 가능할 정도로 연산량이 적어야 하며, 움직임이 많은 핸드폰의 특성상 프레임과 프레임 사이의 움직임과 조명 및 배경에 따라 검출된 얼굴 영역이 급격히 변화하는 문제를 해결할 수 있는 얼굴영역 검출 알고리즘을 개발하고자 하였다.
본 논문에서는 GMM-supervector를 특징 파라미터로 하는 SVM 기반 화자 분류에 대해서 실험하였다. 실험을 위한 화자 클러스터를 생성하기 위해서 기존의 SNR 기반 가중치를 반영한 KL거리 기반 화자변화검출을 실행하였다. SVM 기반 화자 분류는 2단계로 이루어져있다. 1단계는 UBM과 화자 모델들간의 SVM 기반 분류를 시행하여 각 클러스터에 화자 정보를 인덱싱한 다음 화자별로 그룹핑한다. 2단계는 화자 클러스터 그룹에 UBM과 화자모델들간의 SVM 기반 분류를 시행한다. SVM의 커널 함수로는 Linear와 RBF를 사용하였다. 실험결과, 1단계에서는 Linear 커널이 화자 클러스터 148개, MDR 0, FAR 47.3, ER 50.7로 좋은 성능으로 보였다. 2단계 실험결과도 Linear 커널이 화자 클러스터 109개, MDR 1.3, FAR 28.4, ER 32.1로 좋은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.