• Title/Summary/Keyword: spatio-temporal query Processing

Search Result 49, Processing Time 0.023 seconds

Spatio-temporal Query Processing Systems for Ubiquitous Environments

  • Kim, Jeong Joon;Kang, Jeong Jin;Rothwell, Edward J.;Lee, Ki Young
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.5 no.2
    • /
    • pp.1-4
    • /
    • 2013
  • With the recent development of the ubiquitous computing technology, there are increasing interest and research in technologies such as sensors and RFID related to information recognition and location positioning in various ubiquitous fields. Especially, RTLS (Real-Time Locating Services) dealing with spatio-temporal data is emerging as a promising technology. For these reasons, the ISO/IEC published RTLS standard specification for compatibility and interoperability in RTLS. Therefore, in this paper, we designed and implemented Spatio-temporal Query Processing Systems for efficiently managing and searching the incoming Spatio-temporal data stream of moving objects. Spatio-temporal Query Processing Systems's spatio-temporal middleware maintains interoperability among heterogeneous devices and guarantees data integrity in query processing through real time processing of unceasing spatio-temporal data streams and two way synchronization of spatio-temporal DBMSs. Web Server uses the SOAP(Simple Object Access Protocol) message between client and server for interoperability and translates client's SOAP message into CQL(Continuous Query Language) of the spatio-temporal middleware.

Spatio-temporal Query Processing Systems for Ubiquitous Environments (유비쿼터스 환경을 위한 시공간 질의 처리 시스템)

  • Lee, Ki-Young;Lim, Myung-Jae;Kim, Kyu-Ho;Kim, Joung-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.145-152
    • /
    • 2010
  • With the recent development of the ubiquitous computing technology, there are increasing interest and research in technologies such as sensors and RFID related to information recognition and location positioning in various ubiquitous fields. Especially, RTLS(Real-Time Locating Services) dealing with spatio-temporal data is emerging as a promising technology. For these reasons, the ISO/IEC published the RTLS standard specification for compatibility and interoperability in RTLS. Therefore, in this paper, we designed and implemented Spatio-temporal Query Processing Systems for efficiently managing and searching the incoming Spatio-temporal data stream of moving objects. Spatio-temporal Query Processing Systems's spatio-temporal middleware maintains interoperability among heterogeneous devices and guarantees data integrity in query processing through real time processing of unceasing spatio-temporal data streams and two way synchronization of spatio-temporal DBMSs. Web Server uses the SOAP(Simple Object Access Protocol) message between client and server for interoperability and translates client's SOAP message into CQL(Continuous Query Language) of the spatio-temporal middleware. Finally, this thesis proved the utility of the system by applying the spatio-temporal Query Processing Systems to a real-time Locating Services.

Spatio-Temporal Query Processing Over Sensor Networks: Challenges, State Of The Art And Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz;Tanveer, Sadaf;Iqbal, Majid
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1756-1776
    • /
    • 2012
  • Wireless sensor networks (WSNs) are likely to be more prevalent as their cost-effectiveness improves. The spectrum of applications for WSNs spans multiple domains. In environmental sciences, in particular, they are on the way to become an essential technology for monitoring the natural environment and the dynamic behavior of transient physical phenomena over space. Existing sensor network query processors (SNQPs) have also demonstrated that in-network processing is an effective and efficient means of interaction with WSNs for performing queries over live data. Inspired by these findings, this paper investigates the question as to whether spatio-temporal and historical analysis can be carried over WSNs using distributed query-processing techniques. The emphasis of this work is on the spatial, temporal and historical aspects of sensed data, which are not adequately addressed in existing SNQPs. This paper surveys the novel approaches of storing the data and execution of spatio-temporal and historical queries. We introduce the challenges and opportunities of research in the field of in-network storage and in-network spatio-temporal query processing as well as illustrate the current status of research in this field. We also present new areas where the spatio-temporal and historical query processing can be of significant importance.

Development of a Spatio-Temporal Query Processing System for Mobile Devices (모바일 장치용 시공간 질의 처리 시스템의 개발)

  • Shin, In-Su;Yang, Hyeong-Sik;Kim, Joung-Joon;Han, Ki-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.81-91
    • /
    • 2012
  • As the recent development of the ubiquitous computing environment, u-GIS is being highlighted as the core technology of the ubiquitous computing environment, and thereby, studies on spatio-temporal data are being actively conducted. In this u-GIS environment, it is still difficult for existing mobile devices to efficiently manage the massive spatio-temporal data of u-GIS that are increasing day by day. Therefore, this paper develops a spatio-temporal query processing system for mobile devices in order to solve the problem. The system provides various spatio-temporal operators to insert/delete/update/search spatio-temporal data and supports a query optimization function that uses a spatio-temporal index for the flash memory and a spatio-temporal histogram for guaranteeing query execution speed. Lastly, by applying the spatio-temporal query processing system developed in this paper to the virtual scenario, this paper has proved that the system can be utilized in various application fields necessary to process spatio-temporal data in the mobile environment.

Query Processing of Spatio-temporal Trajectory for Moving Objects (이동 객체를 위한 시공간 궤적의 질의 처리)

  • Byoungwoo Oh
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.52-59
    • /
    • 2023
  • The importance of spatio-temporal trajectories for contact tracing has increased due to the recent COVID-19 pandemic. Spatio-temporal trajectories store time and spatial data of moving objects. In this paper, I propose query processing for spatio-temporal trajectories of moving objects. The spatio-temporal trajectory model of moving objects has point type spatial data for storing locations and timestamp type temporal data for time. A trajectory query is a query to search for pairs of users who have been in close contact by boarding the same bus. To process the trajectory query, I use the Geolife dataset provided by Microsoft. The proposed trajectory query processing method divides trajectory data by date and checks whether users' trajectories were nearby for each date to generate information about contacts as the result.

  • PDF

An efficient spatio-temporal index for spatio-temporal query in wireless sensor networks

  • Lee, Donhee;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4908-4928
    • /
    • 2017
  • Recent research into wireless sensor network (WSN)-related technology that senses various data has recognized the need for spatio-temporal queries for searching necessary data from wireless sensor nodes. Answers to the queries are transmitted from sensor nodes, and for the efficient transmission of the sensed data to the application server, research on index processing methods that increase accuracy while reducing the energy consumption in the node and minimizing query delays has been conducted extensively. Previous research has emphasized the importance of accuracy and energy efficiency of the sensor node's routing process. In this study, we propose an itinerary-based R-tree (IR-tree) to solve the existing problems of spatial query processing methods such as efficient processing and expansion of the query to the spatio-temporal domain.

Spatio-temporal Sensor Data Processing Techniques

  • Kim, Jeong-Joon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1259-1276
    • /
    • 2017
  • As technologies related to sensor network are currently emerging and the use of GeoSensor is increasing along with the development of Internet of Things (IoT) technology, spatial query processing systems to efficiently process spatial sensor data are being actively studied. However, existing spatial query processing systems do not support a spatial-temporal data type and a spatial-temporal operator for processing spatialtemporal sensor data. Therefore, they are inadequate for processing spatial-temporal sensor data like GeoSensor. Accordingly, this paper developed a spatial-temporal query processing system, for efficient spatial-temporal query processing of spatial-temporal sensor data in a sensor network. Lastly, this paper verified the utility of System through a scenario, and proved that this system's performance is better than existing systems through performance assessment of performance time and memory usage.

Design and Implementation of a Data Management System for Mobile Spatio-Temporal Query (모바일 시공간 질의을 위한 데이타 관리 시스템의 설계 및 구현)

  • Lee, Ki-Young;Lim, Myung-Jae;Kim, Joung-Joon;Kim, Kyu-Ho;Kim, Jeong-Lae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.109-113
    • /
    • 2011
  • Recently, according to the development of ubiquitous computing, the u-GIS which not only used in u-Transport, u-Care, u-Fun, u-Green, u-Business, u-Government, and u-City but also used to provides various spatial information such as the location of user is being the core technology of the ubiquitous computing environment. In this paper, we implemented an mobile spatio-temporal Query Processing Systems for handling the Spatio-Temporal Data in mobile equipment.The mobile spatio-temporal Query Processing Systems provides the spatio-temporal data type and the spatio-temporal operator that is expanded by the spatial data type and the spatial operator from OepenGIS "Simple Feature Specification for SQL". It supports arithmetic coding compression techniques that is considered with a spatio-temporal data specific character. It also provides the function of data cashing for improving the importation and exportation of the spatio-temporal data between a embedded spatio-temporal DBMS and u-GIS server.

Spatio-Temporal Query Processing System based on GML for The Mobile Environment (모바일 환경을 위한 GML 기반 시공간 질의 처리 시스템)

  • Kim, Joung-Joon;Shin, In-Su;Won, Seung-Ho;Lee, Ki-Young;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.95-106
    • /
    • 2012
  • Recently, with increase and development of the wireless access network area, u-GIS Service is supported in various fields. Especially, spatio-temporal data is used in the mobile environment for the u-GIS service. However, there is no standard for the spatio-temporal data used in different spaces, spatio-temporal data processing technology is necessary to makes interoperability among mobile u-GIS services. Furthermore, it is also necessary to develop the system of gathering, storing, and managing the spatio-temporal data in consideration of small capacity and low performance of mobile devices. Therefore, in this paper, we designed and implemented a spatio-temporal query processing system based on GML to manage spatio-temporal data efficiently in the mobile environment. The spatio-temporal query processing system based on GML can offer a structured storage method which maps a GML schema to a storage table and a binary XML storage method which uses the Fast Infoset technique, so as to support interoperability that is an important feature of GML and increase storage efficiency. we can also provide spatio-temporal operators for rapid query processing of spatio-temporal data of GML documents. In addition, we proved that this system can be utilized for the u-GIS service to implement a virtual scenario.

Continuous Spatio-Temporal Self-Join Queries over Stream Data of Moving Objects for Symbolic Space (기호공간에서 이동객체 스트림 데이터의 연속 시공간 셀프조인 질의)

  • Hwang, Byung-Ju;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.77-87
    • /
    • 2010
  • Spatio-temporal join operators are essential to the management of spatio-temporal data such as moving objects. For example, the join operators are parts of processing to analyze movement of objects and search similar patterns of moving objects. Various studies on spatio-temporal join queries in outdoor space have been done. Recently with advance of indoor positioning techniques, location based services are required in indoor space as well as outdoor space. Nevertheless there is no one about processing of spatio-temporal join query in indoor space. In this paper, we introduce continuous spatio-temporal self-join queries in indoor space and propose a method of processing of the join queries over stream data of moving objects. The continuous spatio-temporal self-join query is to update the joined result set satisfying spatio-temporal predicates continuously. We assume that positions of moving objects are represented by symbols such as a room or corridor. This paper proposes a data structure, called Candidate Pairs Buffer, to filter and maintain massive stream data efficiently and we also investigate performance of proposed method in experimental study.