• Title/Summary/Keyword: spatio-temporal image

Search Result 103, Processing Time 0.024 seconds

Saptio-temporal Deinterlacing Based on Edge Direction and Spatio-temporal Brightness Variations (에지 방향성과 시공간 밝기 변화율을 고려한 시공간 De-Interlacing)

  • Jung, Jee-Hoon;Hong, Sung-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 2011
  • In this paper, we propose an efficient deinterlacing algorithm which interpolates the missing scan lines by weighted summing of the intra and the inter interpolation pixels according to the spatio-temporal variation. In the spatial interpolation, we adopt a new edge based spatial interpolation method which includes edge directional refinement. The conventional edge dependent interpolation algorithms are very sensitive to noise due to the failure of estimating edge direction. In order to exactly detect edge direction, our method first finds the edge directions around the pixel to be interpolated and then refines edge direction of the pixel using weighted maximun frequent filter. Futhermore, we improve the accuracy of motion detection by reducing the possibility of motion detection error using 3 tab median filter. In the final interpolation step, we adopt weighted sum of intra and inter interpolation pixels according to spatio-temporal variation ratio, thereby improving the quality in slow moving area. Simulation results show the efficacy of the proposed method with significant improvement over the previous methods in terms of the objective PSNR quality as well as the subjective image quality.

Analysis of Surface Image Velocity Field without Ground Control Points using Drone Navigation Information (드론의 비행정보를 이용한 지상표정점 없는 표면유속장 분석)

  • Yu, Kwonkyu;Lee, Junhyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.154-162
    • /
    • 2022
  • In this study, a technique for estimating water surface velocity fields in the Universal Transverse Mercator coordinate system using the GPS information of a propagating drone but not ground control points is developed. First, we determine the image direction in which the upper side of an image is directed based on the navigation information of the drone. Subsequently, we assign the start and end frames of the video used and determine the analysis range. Using these two frames, we segment the measurement cross-section into a few subsections at regular intervals. At these subsections, we analyze 30 frame images to create spatio-temporal volumes for calculating the velocity fields. The results of the developed method (propagating drone surface image velocimetry) are compared with those of the existing method (hovering drone surface image velocimetry), and relatively good agreement is indicated between both in terms of the velocity fields.

Color Enhancement in Images with Single CCD camera in Night Vision Environment

  • Hwang, Wonjun;Ko, Hanseok
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.58-61
    • /
    • 2000
  • In this paper, we describe an effective method to enhance the color night images with spatio-temporal multi-scale retinex focused to the Intelligent Transportation System (ITS) applications such as in the single CCD based Electronic Toll Collection System (ETCS). The basic spatial retinex is known to provide color constancy while effectively removing local shades. However, it is relatively ineffective in night vision enhancement. Our proposed method, STMSR, exploits the iterative time averaging of image sequences to suppress the noise in consideration of the moving vehicles in image frame. In the STMSR method, the spatial term makes the dark images distinguishable and preserves the color information day and night while the temporal term reduces the noise effect for sharper and clearer reconstruction of the contents in each image frame. We show through representative simulations that incorporating both terms in the modeling produces the output sequential images visually more pleasing than the original dim images.

  • PDF

Hole-Filling Method Using Extrapolated Spatio-temporal Background Information (추정된 시공간 배경 정보를 이용한 홀채움 방식)

  • Kim, Beomsu;Nguyen, Tien Dat;Hong, Min-Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.67-80
    • /
    • 2017
  • This paper presents a hole-filling method using extrapolated spatio-temporal background information to obtain a synthesized view. A new temporal background model using non-overlapped patch based background codebook is introduced to extrapolate temporal background information In addition, a depth-map driven spatial local background estimation is addressed to define spatial background constraints that represent the lower and upper bounds of a background candidate. Background holes are filled by comparing the similarities between the temporal background information and the spatial background constraints. Additionally, a depth map-based ghost removal filter is described to solve the problem of the non-fit between a color image and the corresponding depth map of a virtual view after 3-D warping. Finally, an inpainting is applied to fill in the remaining holes with the priority function that includes a new depth term. The experimental results demonstrated that the proposed method led to results that promised subjective and objective improvement over the state-of-the-art methods.

Measurement of Two-Dimensional Velocity Distribution of Spatio-Temporal Image Velocimeter using Cross-Correlation Analysis (상호상관법을 이용한 시공간 영상유속계의 2차원 유속분포 측정)

  • Yu, Kwonkyu;Kim, Seojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.537-546
    • /
    • 2014
  • Surface image velocimetry was introduced as an efficient and sage alternative to conventional river flow measurement methods during floods. The conventional surface image velocimetry uses a pair of images to estimate velocity fields using cross-correlation analysis. This method is appropriate to analyzing images taken with a short time interval. It, however, has some drawbacks; it takes a while to analyze images for the verage velocity of long time intervals and is prone to include errors or uncertainties due to flow characteristics and/or image taking conditions. Methods using spatio-temporal images, called STIV, were developed to overcome the drawbacks of conventional surface image velocimetry. The grayscale-gradient tensor method, one of various STIVs, has shown to be effectively reducing the analysis time and is fairly insusceptible to any measurement noise. It, unfortunately, can only be applied to the main flow direction. This means that it can not measure any two-dimensional flow field, e.g. flow in the vicinity of river structures and flow around river bends. The present study aimed to develop a new method of analyzing spatio-temporal images in two-dimension using cross-correlation analysis. Unlike the conventional STIV, the developed method can be used to measure two-dimensional flow substantially. The method also has very high spatial resolution and reduces the analysis time. A verification test using artificial images with lid-driven cavity flow showed that the maximum error of the method is less than 10 % and the average error is less than 5 %. This means that the developed scheme seems to be fairly accurate, even for two-dimensional flow.

Three-Dimensional Subband Coding of Video using Wavelet Packet Algorithm (웨이브릿 패킷 알고리즘을 이용한 3차원 비디오 서브밴드 코딩)

  • Chu, Hyung Suk;An, Chong Koo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.673-679
    • /
    • 2005
  • This Paper presents the 3D wavelet transformation based video compression system, which possesses the capability of progressive transmission by increasing resolution and increasing rate for multimedia applications. The 3D wavelet packet based video compression system removes the temporal correlation of the input sequences using the motion compensation filter and decomposes the spatio-temporal subband using the spatial wavelet packet transformation. The proposed system allocates the higher bit rate to the low frequency image of the 3D wavelet sequences and improves the 0.49dB PSNR performance of the reconstructed image in comparison with that of H.263. In addition to the limitation on the propagation of the motion compensation error by the 3D wavelet transformation, the proposed system progressively transmits the input sequence according to the resolution and rate scalability.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Dynamic Computed Tomography based on Spatio-temporal Analysis in Acute Stroke: Preliminary Study (급성 뇌졸중 환자의 시공간 분석 기법을 이용한 동적 전산화 단층 검사: 예비 연구)

  • Park, Ha-Young;Pyeon, Do-Yeong;Kim, Da-Hye;Jung, Young-jin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Acute stroke is a one of common disease that require fast diagnosis and treatment to save patients life. however, the acute stroke may cause lifelong disability due to brain damage with no prompt surgical procedure. In order to diagnose the Stroke, brain perfusion CT examination and possible rapid implementation of 3D angiography has been widely used. However, a low-dose technique should be applied for the examination since a lot of radiation exposure to the patient may cause secondary damage for the patients. Therefore, the degradation of the measured CT images may interferes with a clinical check in that blood vessel shapes on the CT image are significantly affected by gaussian noise. In this study, we employed the spatio-temporal technique to analyze dynamic (brain perfusion) CT data to improve an image quality for successful clinical diagnosis. As a results, proposed technique could remove gaussian noise successfully, demonstrated a possibility of new image segmentation technique for CT angiography. Qualitative evaluation was conducted by skilled radiological technologists, indicated significant quality improvement of dynamic CT images. the proposed technique will be useful tools as a clinical application for brain perfusion CT examination.

Spatio-temporal change detection of land-use and urbanization in rural areas using GIS and RS - Case studies of Yongin and Anseong regions - (GIS와 RS를 이용한 농촌지역 토지이용 및 도시화 변화현상의 시공간 탐색 - 용인 및 안성지역을 중심으로 -)

  • Gao, Yujie;Kim, Dae-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.153-162
    • /
    • 2011
  • This study analyzed the spatio-temporal change detection of land-use and urbanization in Yongin and Anseong regions, Kyunggi Province, using three Landsat-5 TM images for 1990, 1996, and 2000. Remote sensing (RS) and geographic information system (GIS) techniques were used for image classification and result analysis. Six land-use types were classified using supervised maximum likelihood classification. In the two study areas, the land-use changed significantly, especially the decrease of arable land and forest and increase of built-up area. Spatially, the urban expansion of Yongin region showed a spreading trend mainly along the national road and expressways. But in Anseong region the expansion showed 'urban sprawl phenomenon' with irregular shape like starfish. Temporally, the urban expansion showed disparity - the growth rates of urbanized area rose from the period 1990-1996 to 1996-2000 in both study areas. The increased built-up areas were converted mainly from paddy, dry vegetation, and forest.

Real-Time Automatic Target Tracking Based on Spatio-Temporal Gradient Method with Generalized Least Square Estimation (일반화 최소자승추정의 시공간경사법에 의한 실시간 자동목표 추적)

  • Jang, Ick-Hoon;Kim, Jong-Dae;Kim, Nam-Chul;Kim, Jae-Kyoon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.78-87
    • /
    • 1989
  • In this paper, a spatio-temporal gradient (STG) method with generalized least square estimation (GLSE) is proposed for the detection of an object motion in an image sequence corrupted by white Gaussian noise. The proposed method is applied to an automatic target tracker using a high speed 16-bit microprocessor in order to track one moving target in real time. Experimental results show that the proposed method has much better performance over the conventional one with least square estimation (LSE).

  • PDF