Abstract
Acute stroke is a one of common disease that require fast diagnosis and treatment to save patients life. however, the acute stroke may cause lifelong disability due to brain damage with no prompt surgical procedure. In order to diagnose the Stroke, brain perfusion CT examination and possible rapid implementation of 3D angiography has been widely used. However, a low-dose technique should be applied for the examination since a lot of radiation exposure to the patient may cause secondary damage for the patients. Therefore, the degradation of the measured CT images may interferes with a clinical check in that blood vessel shapes on the CT image are significantly affected by gaussian noise. In this study, we employed the spatio-temporal technique to analyze dynamic (brain perfusion) CT data to improve an image quality for successful clinical diagnosis. As a results, proposed technique could remove gaussian noise successfully, demonstrated a possibility of new image segmentation technique for CT angiography. Qualitative evaluation was conducted by skilled radiological technologists, indicated significant quality improvement of dynamic CT images. the proposed technique will be useful tools as a clinical application for brain perfusion CT examination.
급성 뇌졸중(acute stroke)의 경우 빠른 처치가 이루어지지 않으면 뇌손상으로 인해 평생 장애를 가지고 살아가야 하는 질환이다. 따라서 뇌졸중 환자가 발생할 경우에는 신속한 진단과 치료가 이루어져야 하므로 장시간의 검사를 해야 하는 MRI 보다는 빠른 검사와 3D 구현이 가능한 뇌 관류전산화단층촬영(Brain Perfusion CT)이 널리 활용되고 있다. 그러나 환자에게 많은 방사선 피폭이 이루어질 수 있기 때문에 저선량(low dose) 기법을 사용하여 영상을 획득하게 된다. 이로 인해 촬영된 영상의 질 저하가 유발되며, 특히 가우시안노이즈의 영향을 크게 받아 정확한 혈관 영상의 확인을 저해한다. 본 연구에서는 관류전산화단층촬영을 통해 얻어진 동적 CT 데이터에 시공간 분석 기법을 적용하여 진단 영상의 질을 향상시키고자 한다. 특히, 가우시안노이즈를 제거하기 위해서 선형 특징 축출 방법 중 하나인 주성분 분석 기법을 적용하여 분석하였으며, 그 결과 시공간 특징에 따른 각각의 관류 영상 성분을 축출한 경우 뇌-혈관 영상뿐만 아니라 뇌-실질 영상의 질이 향상됨을 가시적으로 확인할 수 있었다. 새롭게 시도된 시공간 기반 영상기법이 향후 급성 뇌졸중 진단뿐만 아니라 다양한 시계열 정보가 포함된 뇌질환 진단 영상분석에 활용된다면, 임상 진단의 질 향상에 도움이 될 것이라 기대한다.