• Title/Summary/Keyword: spatially correlated channel

Search Result 20, Processing Time 0.028 seconds

Uplink Achievable Rate analysis of Massive MIMO Systems in Transmit-correlated Ricean Fading Environments

  • Yixin, Xu;Fulai, Liu;Zixuan, Zhang;Zhenxing, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.261-279
    • /
    • 2023
  • In this article, the uplink achievable rate is investigated for massive multiple-input multiple-output (MIMO) under correlated Ricean fading channel, where each base station (BS) and user are both deployed multiple antennas. Considering the availability of prior knowledge at BS, two different channel estimation approaches are adopted with and without prior knowledge. Based on these channel estimations, a two-layer decoding scheme is adopted with maximum ratio precoding as the first layer decoder and optimal second layer precoding in the second layer. Based on two aforementioned channel estimations and two-layer decoding scheme, the exact closed form expressions for uplink achievable rates are computed with and without prior knowledge, respectively. These derived expressions enable us to analyze the impacts of line-of-sight (LoS) component, two-layer decoding, data transmit power, pilot contamination, and spatially correlated Ricean fading. Then, numerical results illustrate that the system with spatially correlated Ricean fading channel is superior in terms of uplink achievable rate. Besides, it reveals that compared with the single-layer decoding, the two-layer decoding scheme can significantly improve the uplink achievable rate performance.

Pilot Sequence Assignment for Spatially Correlated Massive MIMO Circumstances

  • Li, Pengxiang;Gao, Yuehong;Li, Zhidu;Yang, Dacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.237-253
    • /
    • 2019
  • For massive multiple-input multiple-output (MIMO) circumstances with time division duplex (TDD) protocol, pilot contamination becomes one of main system performance bottlenecks. This paper proposes an uplink pilot sequence assignment to alleviate this problem for spatially correlated massive MIMO circumstances. Firstly, a single-cell TDD massive MIMO model with multiple terminals in the cell is established. Then a spatial correlation between two channel response vectors is established by the large-scale fading variables and the angle of arrival (AOA) span with an infinite number of base station (BS) antennas. With this spatially correlated channel model, the expression for the achievable system capacity is derived. To optimize the achievable system capacity, a problem regarding uplink pilot assignment is proposed. In view of the exponential complexity of the exhaustive search approach, a pilot assignment algorithm corresponding to the distinct channel AOA intervals is proposed to approach the optimization solution. In addition, simulation results prove that the main pilot assignment algorithm in this paper can obtain a noticeable performance gain with limited BS antennas.

A spatially and temporally correlatedfading channel model for smart antenna applications

  • 김선택;윤남일;정한욱;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.611-617
    • /
    • 1997
  • In this paper a new fading model is proposed, which is well consistent with the real environment of smart antenna applications since it is spatially and temporally correlated simultaneously. The new model(STCFM: Spatially and Temporally Correlated Fading Model) is derived statistically in spatio-temporal domain so that it can provide high accuracy in the evaluation of the smart antenna system. As will be seen, the simulation results agree well with the theory.

  • PDF

Transmit Eigen-Beamformer with Space-Time Block Code for MISO Wireless Communication Systems

  • Kim, Hong-Cheol;Park, jae-Hyung;Yoan Shin;Lee, Won-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1932-1935
    • /
    • 2002
  • This paper introduces the downlink Eigen-beamformer with Space-Time Block Code (STBC) 〔1,2〕employed on the MISO (Multiple Input Multiple Output) systems. The proposed scheme is acquired both transmit diversity gain from STBC and beamforming gain from Eigen-beamformer. In general, it is well described that the diversity gain be maximized when channel parameters associated to fingers are mutually independent. Major role f utilizing Eigen-beamformer is to enforce channel parameters being uncorrelated. According to this, the proposed STBC combined with Eigen-beamformer on the downlink significantly improves its performance under the spatially correlated channel. Simulation results are accomplished under three distinct channel conditioned with varying the degree of their correlations. The result indicates hat our proposed scheme is good performance in spatially correlated channel.

  • PDF

TEBS Technique with Using STBC for MISO Systems

  • Kim, Hong-Cheol;Park, Jae-Hyung;Lee, Won-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.140-145
    • /
    • 2002
  • This paper introduces the downlink Eigen-beamformer with Space-Time Block Code (STBC)[1,2] employed on the MISO (Multiple Input Multiple Output) systems. The proposed scheme is acquired both transmit diversity gain from STBC and beamforming gain from Eigen-beamformer. In general, it is well described that the diversity gain be maximized when channel parameters associated to fingers are mutually independent. Major role of utilizing Eigen-beamformer is to enforce channel parameters being uncorrelated. According to this, the proposed STBC combined with Eigen-beamformer on the downlink significantly improves its performance under the spatially correlated channel. Simulation results are accomplished under three distinct channels conditioned with varying the degree of their correlations. The result indicates that our proposed scheme is good performance in spatially correlated channel.

Analysis on the Performance of $2{\times}1$ Alamouti Scheme in Time-varying and Spatially Correlated Channels (시변 및 공간 상관 채널 환경에서 $2{\times}1$ 알라마우티 구조 (Alamouti Scheme)의 성능 분석)

  • Lee, Eun-Ju;Park, Jae-Don;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.539-542
    • /
    • 2011
  • In this paper, we have implemented a performance analysis of $2{\times}1$ Alamouti scheme suggested by Alamouti, composed of the transmit space-time code and the simple linear decoding processing, in perfectly time-varying and spatially correlated channels. In addition, we derived the closed-form probability density function (PDF) of the output signal-to-noise ratio (SNR) and the outage probability of the Alamouti scheme as a function of the spatial correlation coefficient in the consideration of no correlation in time. As a result, it was found that the performance of the Alamouti scheme could be significantly degraded particularly in the case that the channels are time-varying and spatially correlated.

  • PDF

An Antenna Selection and Switching System Robust to Spatially Correlated Channel (공간적 상관도가 존재하는 채널에 강인한 다중안테나 선택 및 스위칭 시스템)

  • 심세준;박승일;이학주;이충용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.55-61
    • /
    • 2004
  • This paper proposes an antenna selection and switching system between spatial multiplexing and diversity techniques. The proposed system overcomes spatial correlation by using antenna selection method and improve bit error performance with switching encoding nudes between a spatial multipexing encoder and a diversity encoder. Therefore, in a 4 transmit and 2 receive antenna system first, the proposed system selects 2 transmit antennas, and next, switches encoding modes between Space-Time Transmit Diversity and BLAST according to instantaneous channel information. Computer simulations showed that the proposed system improves about 2 or 3 ㏈ SNR in low correlated channel and about 3 ㏈ SNR in highly correlated channel rather than a 2 by 2 antenna switching system.

Partial Principal Component Elimination Method and Extended Temporal Decorrelation Method for the Exclusion of Spontaneous Neuromagnetic Fields in the Multichannel SQUID Magnetoencephalography

  • Kim, Kiwoon;Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kang, Chan-Seok;Kim, In-Seon;Park, Yong-Ki
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.114-120
    • /
    • 2003
  • We employed a method eliminating a temporally partial principal component (PC) of multichannel-recorded neuromagnetic fields for excluding spatially correlated noises from event-evoked signals. The noises in magnetoencephalography (MEG) are considered to be mainly spontaneous neuromagnetic fields which are spatially correlated. In conventional MEG experiments, the amplitude of the spontaneous neuromagnetic field is much lager than that of the evoked signal and the synchronized characteristics of the correlated rhythmic noise makes it possible for us to extract the correlation noises from the evoked signal by means of the general PC analysis. However, the whole-time PC of the fields still contains a little projection component of the evoked signal and the elimination of the PC results in the distortion of the evoked signal. Especially, the distortion will not be negligible when the amplitude of the evoked signal is relatively large or when the evoked signals have a spatially-asymmetrical distribution which does not cancel out the corresponding elements of the covariance matrix. In the period of prestimulus, there are only the spontaneous fields and we can find the pure noise PC that is not including the evoked signal. Besides that, we propose a method, called the extended temporal decorrelation method (ETDM), to suppress the distortion of the noise PC from remanent evoked signal components. In this study, we applied the Partial Principal component elimination method (PPCE) and ETDM to simulated signals and the auditory evoked signals that had been obtained with our homemade 37-channel magnetometer-based SQUID system. We demonstrate here that PPCE and ETDM reduce the number of epochs required in averaging to about half of that required in conventional averaging.

  • PDF

A Comparative Analysis of Orthogonal SIBC Algorithms in Spatially Correlated Rayleigh Fading Environments (공간 코릴레이션이 존재하는 레일리이 페이딩 환경에서 직교 STBC 알고리즘의 성능 비교 분석)

  • Jang, Eun-Kyoung;Park, Hyung-Rae;Kim, Chang-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.836-843
    • /
    • 2008
  • In this paper we derive the theoretical performance of orthogonal STBC algorithms in spatially correlated Rayleigh fading environments and compare their performances for various correlation conditions. We first derive the theoretical BER of the orthogonal STBC algorithms for both M-ary PSK and M-ary QAM modulation schemes by using the eigenvalues of the channel correlation matrix and then investigate the effect of the spatial correlation on the performance for various transmission rates of $1{\sim}4bps/Hz$. Performance analysis illustrates that the Alamouti scheme provides the better performance than the Tarokh scheme for all the transmission rates in highly correlated fading environments with a correlation being larger than 0.9.

Distribution of Stream-Edge Vegetation in the Balan Stream as Related to Soil Environjments (발안천에서 토양 환경에 따른 하천 주변의 식생분포)

  • 백명수;임경수;이도원;조도순
    • The Korean Journal of Ecology
    • /
    • v.20 no.6
    • /
    • pp.451-459
    • /
    • 1997
  • Seasonal and spatial distribution of vascular plants were examined and related to soil texture, pH, moisture and nutrient contents in the riparian zone of the Balan Stream. In spring the area was dominated by Alopecurus aequalis var. amurensis, was displaced by Persicaria thunbergii and Humulus japonicus in summer. From the stream channel to bank, soil texture and pH were not significantly differentiated, moisture decreased, organic matter and K increased, and TKN and available P increased in June and decreased in August. DCA ordination analysis by species distribution showed spatially and seasonally distinct patterns seasonal difference was evident on axis 1, and spatial difference according to the distance from stream channel was clear, too. Both axis 1 and axis 2 scores were significantly correlated with biomass, pH, and phosphate. Species richness increased were significantly correlated with biomass, pH, and phosphate. Species richness increaed with increasing organic matter and phosphate, and decreased with increasing soil moisture and K. Biomass increased with increasing organic matter, but was negatively related to pH, moisture, TKN, available P and K. Available P was significantly correlated with biomass, pH, and total soil nitrogen. In conclusion, the distribution of riparian vegetation was governed by soil physico-chemical properties, which are primarily determined by how far it is from the stream channel.

  • PDF