• 제목/요약/키워드: spatial transfer coefficient

검색결과 26건 처리시간 0.025초

강재 열처리용 다점 열유속 측정 기술 개발 (Development of Multi-point Heat Flux Measurement for Steel Quenching)

  • 이정호;오동욱;도규형;김태훈
    • 열처리공학회지
    • /
    • 제25권4호
    • /
    • pp.181-189
    • /
    • 2012
  • The demand on quantitative measurement of the heat flux is motivated in making higher-quality steel product through a water quenching process of plate mill. To improve a spatial degree of heat flux measurement, the multi-point heat flux measurement was carried out by a unique experimental technique that has a combination of the existing single-point heat flux gauge. The corresponding heat flux can be easily determined by Fourier's law in a conventional way. The multi-point heat flux gauge developed in this study can be applicable to measure the surface heat flux, the surface heat transfer coefficient during a water quenching applications of steelmaking process. The results exhibit different heat transfer regimes; such as single-phase forced convection, nucleate boiling, and film boiling, that are occurred in close proximity on the multi-point heat flux gauge quenched by water impinging jet.

비정렬격자계를 사용하는 3차원 유동해석코드 개발 (I) - 수치해석방법 - (Development of 3-D Flow Analysis Code Using Unstructured Grid System (I) - Numerical Method -)

  • 김종태;명현국
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1049-1056
    • /
    • 2005
  • A conservative pressure-based finite-volume numerical method has been developed for computing flow and heat transfer by using an unstructured grid system. The method admits arbitrary convex polyhedra. Care is taken in the discretization and solution procedures to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are found by a novel second-order accurate spatial discretization. Momentum interpolation is used to prevent pressure checkerboarding and the SIMPLE algorithm is used for pressure-velocity coupling. The resulting set of coupled nonlinear algebraic equations is solved by employing a segregated approach, leading to a decoupled set of linear algebraic equations fer each dependent variable, with a sparse diagonally dominant coefficient matrix. These equations are solved by an iterative preconditioned conjugate gradient solver which retains the sparsity of the coefficient matrix, thus achieving a very efficient use of computer resources.

냉매 이성분 혼합물의 포화 풀핵비등 특성에 관한 연구 (Study on the characteristics During Saturated Pool Nucleate Boiling of Refrigennt Binary Mixtures)

  • 김정배;이한춘;김무환
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.643-652
    • /
    • 2005
  • Saturated nucleate pool boiling experiments for binary mixtures, which are consisted of refrigerant R11 and R113, were performed with constant wall temperature condition. Results for binary mixtures were also compared with pure fluids. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant temperature of the heating surface and to obtain heat flow rate measurements with high temporal and spatial resolutions. Bubble growth images were captured using a high speed CCD camera synchronized with the heat flow rate measurements. The departure time for binary mixtures was longer than that for pure fluids, and binary mixtures had a higher onset of nucleate boiling (ONB) temperature than pure fluids. In the asymptotic growth region, the bubble growth rate was proportional to a value between $t^{\frac{1}{6}}$ and $t^{\frac{1}{4}}$. The bubble growth behavior was analyzed to permit comparisons with binary mixtures and pure fluids at the same scale using dimensionless parameters. There was no discernable difference in the bubble growth behavior between binary mixtures and pure fluids for a given ONB temperature. And the departure radius and time were well predicted within a ${\pm}30{\%}$ error. The minimum heat transfer coefficient of binary mixtures occurred near the maximum ${\mid}y-x{\mid}$ value, and the average required heat flux during bubble growth did not depend on the mass fraction of R11 as more volatile component in binary mixtures. Finally, the results showed that for binary mixtures, a higher ONB temperature had the greatest effect on reducing the heat transfer coefficient.

소수성 구리 표면에서의 액적 응축에 관한 액적 성장 및 열전달 특성 연구 (Investigation of Droplet Growth and Heat Transfer Characteristics during Dropwise Condensation on Hydrophobic Copper Surface)

  • 이형주;정찬호;김대윤;문주현;이재빈;이성혁
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.149-153
    • /
    • 2018
  • The present study investigates the heat transfer characteristics of droplet growth during dropwise condensation on the hydrophobic copper surface. We use the copper specimen coated by the self-assembled layer and conduct the real-time measurement of droplet size and spatial distribution of condensates during condensation with the use of the K2 lens (long distance microscope lens) and CMOS camera. The temperatures are measured by three RTDs (resistance temperature detectors) that are located through the holes made in the specimen. The surface temperature is estimated by the measured temperatures with the use of the one-dimensional conduction equation. It is observed that the droplets on the surface are growing up and merging, causing larger droplets. The experimental results show that there are three distinct regimes; in the first regime, individual small droplets are created on the surface in the early stage of condensation, and they are getting larger owing to direct condensation and coalescence with other droplets. In the second and third regimes, the coalescence occurs mainly, and the droplets are detached from the surface. Also, the fall-off time becomes faster as the surface wettability decreases. In particular, the heat transfer coefficient increases substantially with the decrease in wettability because of faster removal of droplets on the surfaces for lower wettability.

ABSOLUTE RADIOMETRIC CALIBRATION OF 1M SATELLITE IMAGERY

  • Lee Sun-Gu;Lee Dong-han;Seo Doo-chun;Song Jeong Heon;Kim Yongseung;Paik Hongyul
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.616-619
    • /
    • 2005
  • CALNAL team of Korea Aerospace Research Institute(KARI) performed field campaigns for absolute radiometric calibration of 1m satellite image on Daejeon and the cal/val site of Goheung. The satellite image have spatial resolution of 1m in panchromatic spectral band of 450-900nm. The performed cal/val method is the reflectance-based of vicarious calibration methods. We collected ground-based and meteology data such as temperature, surface pressure and reflectance of targets, and radiosonde data used only to test in Goheung. Data collected on each field served as input to radiative transfer codes to generate a top-of-atmosphere(TOA) radiance estimate. Derived TOA is compared with DN of overpass satellite to calculate calibration coefficient of gain and offset.

  • PDF

방향 정위된 음원에 시간지연을 이용한 확산감 제어에 관한 연구 (Sound Diffusion Control for the Localized Sound Image Using Time Delay)

  • 김익형;정의필
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.135-138
    • /
    • 2001
  • Many researchers have developed the techniques of an efficient 3-D sound system based on the psycho-acoustics of spatial hearing with multimedia or virtual reality In this paper, we propose an idea for the improved 3-D sound system using conventional stereo headphones to obtain a better sound diffusion from the mono-sound recorded at an anechoic chamber. We use the HRTF (Head Related Transfer Function) for the sound localization and the wavelet filter bank with time delay for the sound diffusion. We investigate the effects of the 3-B sound depending on the length of time delay at lowest frequency band. Also the correlation coefficient of the signals between the left channel and the right channel is measured to identify the sound diffusion.

  • PDF

공항의 허브화 평가를 위한 연속연결성지수모형 개발 (Development of Continuous Indirect Connectivity Model for Evaluation of Hub Operations at Airport)

  • 이상용;유광의;박용화
    • 대한교통학회지
    • /
    • 제27권4호
    • /
    • pp.195-206
    • /
    • 2009
  • 유럽 및 미국에서 항공산업의 규제완화는 항공사가 그들의 네트워크를 허브-앤-스포크 구조로 변경토록 하는 원천이 되었다. 최근에 나타나는 아시아 항공시장의 자유화 움직임은 이 지역 항공네트워크를 변화시키는 계기가 될 것이다. 이와 같은 환경변화로 인해 항공사와 공항 당국은 허브-앤-스포크 운영에 따른 상호 연결성을 개선하기 위해 그 개념을 정의하고 연결성 지수를 수립 운영하는 것이 중요한 이슈가 되었다. 본 논문에서는 연속 연결성지수(CICI, Continuous Indirect Connectivity Index)를 제안하여 유럽, 미주 및 아시아 지역의 주요공항들에서 항공사 스케줄에 따른 허브화 조정정도를 평가하고자 하였다. 연속 연결성지수는 세 부분으로 구성된다. 첫째 출발-도착 항공편 간 환승 편의성을 파악하기 위한 시간 연결성지수 설정, 둘째 항공편의 경유 거리에 의한 매력도를 나타내는 공간 연결성지수, 셋째 환승노선의 운항빈도에 의한 상대강도지수 도출 등이다. 본 논문에서는 연속 연결성지수와 환승객수 및 로그 환승률 간 인과관계를 분석하여 지수의 유효성을 증명하였다. 연속 연결성지수와 환승객수의 결정계수는 0.94, 로그 연속 연결성지수와 환승률의 결정계수는 0.69로 Danesi와 Doganis지수보다 높은 인과성과 우수한 설명도를 나타내는 것으로 분석되었다.

Similarity of energy balance in mechanically ventilated compartment fires: An insight into the conditions for reduced-scale fire experiments

  • Suto, Hitoshi;Matsuyama, Ken;Hattori, Yasuo
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2898-2914
    • /
    • 2022
  • When evaluating energy balance and temperature in reduced-scale fire experiments, which are conducted as an alternative to full-scale fire experiments, it is important to consider the similarity in the scale among these experiments. In this paper, a method considering the similarity of energy balance is proposed for setting the conditions for reduced-scale experiments of mechanically ventilated compartment fires. A small-scale fire experiment consisting of various cases with different compartment geometries (aspect ratios between 0.2 and 4.7) and heights of vents and fire sources was conducted under mechanical ventilation, and the energy balance in the quasi-steady state was evaluated. The results indicate the following: (1) although the compartment geometry varies the energy balance in a mechanically ventilated compartment, the variation in the energy balance can be evaluated irrespective of the compartment size and geometry by considering scaling factor F (∝heffAwRT, where heff is the effective heat transfer coefficient, Aw is the total wall area, and RT is the ratio of the spatial mean gas temperature to the exhaust temperature); (2) the value of RT, which is a part of F, reflects the effects of the compartment geometry and corresponds to the distributions of the gas temperature and wall heat loss.

농림위성을 위한 기계학습을 활용한 복사전달모델기반 대기보정 모사 알고리즘 개발 및 검증: 식생 지역을 위주로 (Machine Learning-Based Atmospheric Correction Based on Radiative Transfer Modeling Using Sentinel-2 MSI Data and ItsValidation Focusing on Forest)

  • 강유진;김예진;임정호;임중빈
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.891-907
    • /
    • 2023
  • Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.

온도장 측정 정밀도 향상을 위한 시간 지연 벡터의 재형성 (Regeneration of the Retarded Time Vector for Enhancing the Precision of Acoustic Pyrometry)

  • 김태균;이정권
    • 한국음향학회지
    • /
    • 제33권2호
    • /
    • pp.118-125
    • /
    • 2014
  • 역문제에 기반한 음향 온도 측정법에서는 단면의 음속 분포 계산이 필수적이며, 이를 위하여 단면 외곽에 위치한 센서들 간의 지연시간을 계측하고, 이를 입력으로 하는 전달행렬과 계수 벡터를 이용한 역문제를 이용하여 음속 분포를 예측한다. 그러나, 센서 개수의 부족으로 인하여 충분한 수의 음향 경로가 확보되지 못하면, 지연시간 벡터의 개수가 한정될 수 있다. 지연시간 벡터의 개수는 공간 해상도와 관련 있으며, 부족한 지연시간 벡터의 개수는 공간 해상도의 저하를 초래하여 정확한 온도 재구성 결과를 얻지 못할 수 있다. 본 연구에서는 이 문제를 해결하기 위하여, 실제 측정된 지연시간으로부터 온도장을 재구성 한 뒤, 임의의 경로에 해당하는 지연시간을 재구성 된 온도장으로부터 재형성하여 지연시간 벡터의 개수를 증가시켰다. 측정된 지연시간 벡터와 재형성 된 지연시간 벡터를 함께 사용할 경우, 음향 경로의 개수가 증가하므로 공간 분해능의 향상을 기대할 수 있다. 임의의 온도 분포를 가지는 2차원 단면을 수치 예제로서 채택하였고, 측정된 지연시간만을 이용한 결과와 재형성 된 지연시간을 함께 사용한 재구성 결과를 비교하였다. 그 결과, 재형성 된 지연시간과 측정된 지연시간을 함께 사용한 경우의 온도 재구성 오차가 측정된 지연시간만을 사용한 온도 재구성 오차보다 최대 15 % 감소하였다.