• Title/Summary/Keyword: spatial indexing method

Search Result 79, Processing Time 0.024 seconds

A New Spatial Indexing Method for Level-Of-Detailed Data (레벨별로 상세화된 공간 데이터를 위한 새로운 공간 인덱싱 기법)

  • 권준희;윤용익
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.361-371
    • /
    • 2002
  • An efficient access technique is one of the most Important requirements in GIS. Using level -of-detailed data, we can access spatial data efficiently, because of no access to the fully detailed spatial data. Previous spatial access methods do not access data with level of detail efficiently. To solve it, a few spatial access methods for spatial data with level of detail, are known. However these methods support only a few kinds of data with level of detail, i.e, data through selection and simplification operations. For the effects, we propose a new spatial indexing method supporting fast searching in all kinds of data with level of detail. In the proposed method, the collection of indexes in its own level are integrated into a single index structure. Experimental results show that our method offers both no data redundancy and high search performance.

  • PDF

UIL:A Novel Indexing Method for Spatial Objects and Moving Objects

  • Huang, Xuguang;Baek, Sung-Ha;Lee, Dong-Wook;Chung, Weon-Il;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.19-26
    • /
    • 2009
  • Ubiquitous service based on Spatio-temporal dataspaces requires not only the moving objects data but also the spatial objects. However, existing methods can not handle the moving objects and spatial objects together. To overcome the limitation of existing methods, we propose a new index structure called UIL (Union Indexing Lists) which contains two parts: MOL (Moving Object List) and SOL (Spatial Object List) to index the moving objects and spatial objects together. In addition, it can suppose the flexible queries on these data. We present the results of a series of tests which indicate that the structure perform well.

  • PDF

Development of the Spatial Indexing Method for the Effective Visualization of BIM data based on GIS (GIS 기반 BIM 데이터의 효과적 가시화를 위한 공간인덱싱 기법 개발)

  • Kim, Ji-Eun;Kang, Tae-Wook;Hong, Chang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5333-5341
    • /
    • 2014
  • Recently, with the increasing interest in facility management based on indoor spatial information, various studies have been attempted to manage facility conversion between BIM and GIS. Visualization of the geometry data for a large-scale is one of the major issues to the maintenance system. Therefore, this study designed the spatial indexing algorithm through an IFC schema-based scenario for the effective visualization of BIM data based on GIS. A part of the algorithm was developed implementing the OcTree structure and this research has a test for the developed output with IFC sample data. Ultimately, we propose the spatial indexing method for the effective visualization of BIM data based on GIS.

An Efficient Spatial Join Method Using DOT Index (DOT 색인을 이용한 효율적인 공간 조인 기법)

  • Back, Hyun;Yoon, Jee-Hee;Won, Jung-Im;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.420-436
    • /
    • 2007
  • The choice of an effective indexing method is crucial to guarantee the performance of the spatial join operator which is heavily used in geographical information systems. The $R^*$-tree based method is renowned as one of the most representative indexing methods. In this paper, we propose an efficient spatial join technique based on the DOT(Double Transformation) index, and compare it with the spatial Join technique based on the $R^*$-tree index. The DOT index transforms the MBR of an spatial object into a single numeric value using a space filling curve, and builds the $B^+$-tree from a set of numeric values transformed as such. The DOT index is possible to be employed as a primary index for spatial objects. The proposed spatial join technique exploits the regularities in the moving patterns of space filling curves to divide a query region into a set of maximal sub-regions within which space filling curves traverse without interruption. Such division reduces the number of spatial transformations required to perform the spatial join and thus improves the performance of join processing. The experiments with the data sets of various distributions and sizes revealed that the proposed join technique is up to three times faster than the spatial join method based on the $R^*$-tree index.

Update Frequency Reducing Method of Spatio-Temporal Big Data based on MapReduce (MapReduce와 시공간 데이터를 이용한 빅 데이터 크기의 이동객체 갱신 횟수 감소 기법)

  • Choi, Youn-Gwon;Baek, Sung-Ha;Kim, Gyung-Bae;Bae, Hae-Young
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.137-153
    • /
    • 2012
  • Until now, many indexing methods that can reduce update cost have been proposed for managing massive moving objects. Because indexing methods for moving objects have to be updated periodically for managing moving objects that change their location data frequently. However these kinds indexing methods occur big load that exceed system capacity when the number of moving objects increase dramatically. In this paper, we propose the update frequency reducing method to combine MapReduce and existing indices. We use the update request grouping method for each moving object by using MapReduce. We decide to update by comparing the latest data and the oldest data in grouping data. We reduce update frequency by updating the latest data only. When update is delayed, for the data should not be lost and updated periodically, we store the data in a certain period of time in the hash table that keep previous update data. By the performance evaluation, we can prove that the proposed method reduces the update frequency by comparison with methods that are not applied the proposed method.

Road Object Graph Modeling Method for Efficient Road Situation Recognition (효과적인 도로 상황 인지를 위한 도로 객체 그래프 모델링 방법)

  • Ariunerdene, Nyamdavaa;Jeong, Seongmo;Song, Seokil
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.3-9
    • /
    • 2021
  • In this paper, a graph data model is introduced to effectively recognize the situation between each object on the road detected by vehicles or road infrastructure sensors. The proposed method builds a graph database by modeling each object on the road as a node of the graph and the relationship between objects as an edge of the graph, and updates object properties and edge properties in real time. In this case, the relationship between objects represented as edges is set when there is a possibility of approach between objects in consideration of the position, direction, and speed of each object. Finally, we propose a spatial indexing technique for graph nodes and edges to update the road object graph database represented through the proposed graph modeling method continuously in real time. To show the superiority of the proposed indexing technique, we compare the proposed indexing based database update method to the non-indexing update method through simulation. The results of the simulation show the proposed method outperforms more than 10 times to the non-indexing method.

Implementation of Content-based Image Retrieval System using Color Spatial and Shape Information (칼라 공간과 형태 정보를 이용한 내용기반 이미지 검색 시스템 구현)

  • Ban, Hong-Oh;Kang, Mun-Ju;Choi, Heyung-Jin
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.681-686
    • /
    • 2003
  • In recent years automatic image indexing and retrieval have been increasingly studied. However, content-based retrieval techniques for general images are still inadequate for many purposes. The novelty and originality of this thesis are the definition and use of a spatial information model as a contribution to the accuracy and efficiency of image search. In addition, the model is applied to represent color and shape image contents as a vector using the method of image features extraction, which was inspired by the previous work on the study of human visual perception. The indexing scheme using the color, shape and spatial model shows the potential of being applied with the well-developed algorithms of features extraction and image search, like ranking operations. To conclude, user can retrieved more similar images with high precision and fast speed using the proposed system.

On Indexing Method for Current Positions of Moving Objects (이동 객체의 현재 위치 색인 기법)

  • Park, Hyun-Kyoo;Kang, Sung-Tak;Kim, Myoung-Ho;Min, Kyoung-Wook
    • Journal of Korea Spatial Information System Society
    • /
    • v.5 no.1 s.9
    • /
    • pp.65-74
    • /
    • 2003
  • Location-based service is an important spatiotemporal database application area that provides the location-aware information of wireless terminals via positioning devices such as GPS. With the rapid advances of wireless communication systems, the requirement of mobile application areas including traffic, mobile commerce and supply chaining management became the center of attention for various research issues in spatiotemporal databases. In this paper we present the A-Quadtree, an efficient indexing method for answering location-based queries where the movement vector information (e.g., speed and velocity) is not presented. We implement the A-Quadtree with an index structure for object identifiers as a.Net component to apply the component to multiplatforms. We present our approach and describe the performance evaluation through various experiments. In our experiments, we compare the performance with previous approaches and show the enhanced efficiency of our method.

  • PDF

EPR : Enhanced Parallel R-tree Indexing Method for Geographic Information System (EPR : 지리 정보 시스템을 위한 향상된 병렬 R-tree 색인 기법)

  • Lee, Chun-Geun;Kim, Jeong-Won;Kim, Yeong-Ju;Jeong, Gi-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2294-2304
    • /
    • 1999
  • Our research purpose in this paper is to improve the performance of query processing in GIS(Geographic Information System) by enhancing the I/O performance exploiting parallel I/O and efficient disk access. By packing adjacent spatial data, which are very likely to be referenced concurrently, into one block or continuous disk blocks, the number of disk accesses and the disk access overhead for query processing can be decreased, and this eventually leads to the I/O time decrease. So, in this paper, we proposes EPR(Enhanced Parallel R-tree) indexing method which integrates the parallel I/O method of the previous Parallel R-tree method and a packing-based clustering method. The major characteristics of EPR method are as follows. First, EPR method arranges spatial data in the increasing order of proximity by using Hilbert space filling curve, and builds a packed R-tree by bottom-up manner. Second, with packing-based clustering in which arranged spatial data are clustered into continuous disk blocks, EPR method generates spatial data clusters. Third, EPR method distributes EPR index nodes and spatial data clusters on multiple disks through round-robin striping. Experimental results show that EPR method achieves up to 30% or more gains over PR method in query processing speed. In particular, the larger the size of disk blocks is and the smaller the size of spatial data objects is, the better the performance of query processing by EPR method is.

  • PDF

An Extended R-Tree Indexing Method using Prefetching in Main Memory (메인 메모리에서 선반입을 사용한 확장된 R-Tree 색인 기법)

  • Kang, Hong-Koo;Kim, Dong-O;Hong, Dong-Sook;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.19-29
    • /
    • 2004
  • Recently, studies have been performed to improve the cache performance of the R-Tree in main memory. A general mothed to improve the cache performance of the R-Tree is to reduce size of an entry so that a node can store more entries and fanout of it can increase. However, this method generally requites additional process to reduce information of entries and do not support incremental updates. In addition, the cache miss always occurs on moving between a parent node and a child node. To solve these problems efficiently, this paper proposes and evaluates the PR-Tree that is an extended R-Tree indexing method using prefetching in main memory. The PR-Tree can produce a wider node to optimize prefetching without additional modifications on the R-Tree. Moreover, the PR-Tree reduces cache miss rates that occur in moving between a parent node and a child node. In our simulation, the search performance, the update performance, and the node split performance of the PR-Tree improve up to 38%. 30%, and 67% respectively, compared with the original R-Tree.

  • PDF