• Title/Summary/Keyword: spatial image

Search Result 3,272, Processing Time 0.027 seconds

A Study for the Adaptive wavelet-based Image Merging method

  • Kim, Kwang-Yong;Yoon, Chang-Rak;Kim, Kyung-Ok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.45-51
    • /
    • 2002
  • The goal of image merging techniques are to enhance the resolution of low-resolution images using the detail information of the high-resolution images. Among the several image merging methods, wavelet-based image merging techniques have the advantages of efficient decorrelation of image bands and time-scale analysis. However, they have no regard for spatial information between the bands. In other words, multiresolution data merging methods merge the same information-the detail information of panchromatic image-with other band images, without considering specific characteristics. Therefore, a merged image contains much unnecessary information. In this paper, we discussed this 'mixing' effect and, proposed a method to classify the detail information of the panchromatic image according to the spatial and spectral characteristics, and to minimize distortion of the merged image.

  • PDF

Pan-Sharpening Algorithm of High-Spatial Resolution Satellite Image by Using Spectral and Spatial Characteristics (영상의 분광 및 공간 특성을 이용한 고해상도 위성영상 융합 알고리즘)

  • Choi, Jae-Wan;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.79-86
    • /
    • 2010
  • Generally, image fusion is defined as generating re-organized image by merging two or more data using special algorithms. In remote sensing, image fusion technique is called as Pan-sharpening algorithm because it aims to improve the spatial resolution of original multispectral image by using panchromatic image of high-spatial resolution. The pan-sharpened image has been an important task due to various applications such as change detection, digital map creation and urban analysis. However, most approaches have tended to distort the spectral information of the original multispectral data or decrease the spatial quality compared with the panchromatic image. In order to solve these problems, a novel pan-sharpening algorithm is proposed by considering the spectral and spatial characteristics of multispectral image. The algorithm is applied to the KOMPSAT-2 and QuickBird satellite image and the results showed that our method can improve the spectral/spatial quality compared with the existing fusion algorithms.

Image Fusion Framework for Enhancing Spatial Resolution of Satellite Image using Structure-Texture Decomposition (구조-텍스처 분할을 이용한 위성영상 융합 프레임워크)

  • Yoo, Daehoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.21-29
    • /
    • 2019
  • This paper proposes a novel framework for image fusion of satellite imagery to enhance spatial resolution of the image via structure-texture decomposition. The resolution of the satellite imagery depends on the sensors, for example, panchromatic images have high spatial resolution but only a single gray band whereas multi-spectral images have low spatial resolution but multiple bands. To enhance the spatial resolution of low-resolution images, such as multi-spectral or infrared images, the proposed framework combines the structures from the low-resolution image and the textures from the high-resolution image. To improve the spatial quality of structural edges, the structure image from the low-resolution image is guided filtered with the structure image from the high-resolution image as the guidance image. The combination step is performed by pixel-wise addition of the filtered structure image and the texture image. Quantitative and qualitative evaluation demonstrate the proposed method preserves spectral and spatial fidelity of input images.

Increasing Spatial Resolution of Remotely Sensed Image using HNN Super-resolution Mapping Combined with a Forward Model

  • Minh, Nguyen Quang;Huong, Nguyen Thi Thu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.559-565
    • /
    • 2013
  • Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.

Smart Rectification on Satellite images

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.75-80
    • /
    • 2002
  • The mainly used technique to rectify satellite images with distortion is to develop a mathematical relationship between the pixel coordinates on the image and the corresponding points on the ground. By defining the relationship between two coordinate systems, a polynomial model is designed and various linear transformations are used. These GCP based geometric correction has performed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The highly variant height of region is resampled with distortion in the rectified image. To solve this problem this paper proposed the TIN-based rectification on a satellite image. The TIN based rectification is good to correct local distortion, but insufficient to reflect overall structure of one scene. So, this paper shows the experimental result and the analysis of each rectification model. It also describes the relationship GCP distribution and rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

  • PDF

Watermarking Algorithm using LSB for Color Image with Spatial Encryption

  • Jung, Soo-Mok
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.242-245
    • /
    • 2019
  • In this paper, watermark embedding technique was proposed to securely conceal the watermark in color cover image by applying the spatial encryption technique. The embedded watermak can be extracted from stego-image without loss. The quality of the stego-image is very good. So it is not possible to visually distinguish the difference between the original cover image and the stego-image. The validity of the proposed technique was verified by mathematical analysis. The proposed watermark embedding technique can be used for intellectual property protection, military, and medical applications that require high security.

Image Description and Matching Scheme Using Synthetic Features for Recommendation Service

  • Yang, Won-Keun;Cho, A-Young;Oh, Weon-Geun;Jeong, Dong-Seok
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.589-599
    • /
    • 2011
  • This paper presents an image description and matching scheme using synthetic features for a recommendation service. The recommendation service is an example of smart search because it offers something before a user's request. In the proposed extraction scheme, an image is described by synthesized spatial and statistical features. The spatial feature is designed to increase the discriminability by reflecting delicate variations. The statistical feature is designed to increase the robustness by absorbing small variations. For extracting spatial features, we partition the image into concentric circles and extract four characteristics using a spatial relation. To extract statistical features, we adapt three transforms into the image and compose a 3D histogram as the final statistical feature. The matching schemes are designed hierarchically using the proposed spatial and statistical features. The result shows that each feature is better than the compared algorithms that use spatial or statistical features. Additionally, if we adapt the proposed whole extraction and matching scheme, the overall performance will become 98.44% in terms of the correct search ratio.

Image Interpolation Using Multiple Neural Networks with Spatial Frequency Characteristic (공간 주파수 특성을 가지는 다중 신경 회로망을 이용한 영상 보간)

  • 우동헌;엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.135-141
    • /
    • 2004
  • Image interpolation is an image enlargement method that calculates an empty pixel value using the information of given pixel values. Since a natural image is composed of various spatial frequency components, it is difficult for one method to interpolate pixels with various spatial frequencies. In this paper, we propose an image interpolation method using multiple neural networks with spatial frequency characteristic. Input image is segmented according to spatial frequency by local variance, and each segmented image is interpolated using neural network established for spatial frequency band. The proposed method is applied to line doubling that becomes an important part in image interpolation because of deinterlacing. In simulation the proposed algorithm shows the improved PSNR result compared with conventional algorithms and method using single neural network.

Measurement of Spatial Resolution in Fiber-optic Image Guides

  • Lee, Bong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.33-36
    • /
    • 2001
  • Common methods of determining the spatial resolution of fiber-optic image guides are by measuring the diameter of individual microfibers or by the use of a resolution test target. However these methods cannot provide enough information of spatial resolution in ultrathin fiber-optic image guides. In this study, a simple method to measure the modulation transfer function (MTF) of an mage guide was developed. The MTFs of ultrathin image guides with 3 and 4${\mu}{\textrm}{m}$ Um diameter were measured by examining transmitted sharp edge image. This method should be especially useful for measuring spatial resolution of ultrahigh resolution image guides with less than 5 ${\mu}{\textrm}{m}$ diameter microfibers because their spatial resolution cannot be determined by individual microfiber diameter due to crosstalk and leaky ray phenomena.

A Study on the Improvement of Image Fusion Accuracy Using Smoothing Filter-based Replacement Method (SFR기법을 이용한 영상 융합의 정확도 향상에 관한 연구)

  • Yun Kong-Hyun
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.85-94
    • /
    • 2006
  • Image fusion techniques are widely used to integrate a lower spatial resolution multispectral image with a higher spatial resolution panchromatic image. However, the existing techniques either cannot avoid distorting the image spectral properties or involve complicated and time-consuming decomposition and reconstruction processing in the case of wavelet transform-based fusion. In this study a simple spectral preserve fusion technique: the Smoothing Filter-based Replacement(SFR) is proposed based on a simplified solar radiation and land surface reflection model. By using a ratio between a higher resolution image and its low pass filtered (with a smoothing filter) image, spatial details can be injected to a co-registered lower resolution multispectral image minimizing its spectral properties and contrast. The technique can be applied to improve spatial resolution for either colour composites or individual bands. The fidelity to spectral property and the spatial quality of SFM are convincingly demonstrated by an image fusion experiment using IKONOS panchromatic and multispectral images. The visual evaluation and statistical analysis compared with other image fusion techniques confirmed that SFR is a better fusion technique for preserving spectral information.

  • PDF