• Title/Summary/Keyword: spatial focusing

Search Result 671, Processing Time 0.021 seconds

Investigating the spatial focusing performance of time reversal Lamb waves on a plate with respect to input source location and the number of sensors (입력소스의 위치와 센서개수에 따른 평판에서의 시간반전램파의 공간집속성능 규명)

  • Seo, dae jae;Park, huyn woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.722-725
    • /
    • 2014
  • The spatial focusing of time reversal Lamb waves on a plate has attracted considerable attention for identifying the location of an input source. This study investigates the spatial focusing performance on a plate with respect to the number of piezoelectric (PZT) sensors for varying locations of input sources. In particular, a small number of PZT sensors produce spatial focusing through the virtual sensor effect due to reflection of Lamb waves at plate edges. The spatial focusing performance with respect to the number of PZT sensors is quantified in terms of signal to noise ratio through numerical simulation and its implication is discussed.

  • PDF

Investigating the Spatial Focusing Performance of Time Reversal Lamb Waves on a Plate through the Finite Element Method (유한요소법을 통한 판에서 시간반전 램파의 공간집속성능 규명)

  • Choi, Jeong-Hee;Lee, Hae-Sung;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1120-1131
    • /
    • 2011
  • Researches using time reversal acoustics(TRA) for impact localization have been paid attention to recently. Dispersion characteristics of Lamb waves, which restrict the utility of classical nondestructive evaluation based on time-of-flight information, can be compensated through the application of TRA to Lamb waves on a plate. This study investigates the spatial focusing performance of time reversal Lamb waves on a plate using finite element analysis. In particular, the virtual sensor effect caused by multiple wave reflections at the boundaries of a plate is shown to enable the spatial focusing of Lamb waves though a very small number of surface-bonded piezoelectric(PZT) sensors are available. The time window size of forward response signals, are normalized with respect to the number of virtual active sensors. Then their effects on the spatial focusing performance of Lamb waves are investigated.

Investigating the Spatial Focusing Performance of Time Reversal Lamb waves for Impact Localization on a Plate (판의 충격위치 추정을 위한 시간반전 램파의 공간모임성능 규명)

  • Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.418-429
    • /
    • 2011
  • Researches using time reversal acoustics (TRA) for impact localization have been paid attention to recently. Dispersion characteristics of Lamb waves, which restrict the utility of classical nondestructive evaluation based on time-of-flight information, can be compensated through the application of TRA to Lamb waves on a plate. This study investigates the spatial focusing performance of time reversal Lamb waves on a plate using finite element analysis. In particular, the virtual sensor effect caused by multiple wave reflections at the boundaries of the plate is shown to enable the spatial focusing of Lamb waves though a very small number of surface-bonded piezoelectric (PZT) sensors are available. The time window size of forward response signals, are normalized with respect to the number of virtual active sensors. Then their effects on the spatial focusing performance of Lamb waves are investigated.

  • PDF

Impact Localization for a Composite Plate Using the Spatial Focusing Properties of Advanced Signal Processing Techniques

  • Jeong, Hyunjo;Cho, Sungjong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.703-710
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a composite plate is presented in this paper. The method employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the spatial focusing efficiency of both approaches at the impact position and its surroundings through impact experiments. The imaging results of impact localization show that the impact location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring knowledge of anisotropic material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testing of plate-like structures.

Development of the SAR Data Processing Package

  • Kim Kwang-Yong;Jeong Soo;Kim Kyoung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.526-528
    • /
    • 2004
  • This paper describes the SAR data processing S/W package it will be able to process the SAR image. This package constructs the several modules: SAR Image processing module, measuring module of surface displacement using differential interferometric SAR method, classification module using the POLSAR data, SAR Focusing module. In this paper, briefly describe the algorithm that is adopted to the functions, and module architecture.

  • PDF

Investigating the Spatial Focusing of Time Reversal Lamb Waves Using a Virtual Sensor Model on a Rectangular Plate (직사각형 판에서 가상탐지자 모델을 이용한 시간반전램파의 공간모임 규명)

  • Park, Hyun-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.553-567
    • /
    • 2011
  • During the last three years, the possibility of the time reversal Lamb waves has been paid attention to for structural health monitoring of a plate. This study proposes a numerical scheme which can simulate the spatial focusing of time reversal Lamb waves on a rectangular plate. In this scheme, a time reversal process is formulated in the frequency domain using active virtual sensors being equivalent to the mirror effects of an actual sensor due to wave reflection on the plate boundary. Forward and backward Lamb wave propagations are represented by scalar functions for simulating the spatial focusing of time reversal Lamb waves. The validity of the proposed scheme is demonstrated through the comparison to the results of finite element analysis in which the spatial focusing of time reversal Lamb waves is realized by wafer-type piezoelectric(PZT) transducers collocated on a rectangular plate.

An Efficient Focusing Method for High Resolution Ultrasound Imaging

  • Kim Kang-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • This paper proposes an efficient array beamforming method using spatial matched filtering for ultrasound imaging. In the proposed method, ultrasound waves are transmitted from an array subaperture with fixed transmit focus as in conventional array imaging. At receive, radio frequency (RF) echo signals from each receive channel are passed through a spatial matched filter that is constructed based on the system transmit-receive spatial impulse response. The filtered echo signals are then summed. The filter remaps and spatially registers the acoustic energy from each element so that the pulse-echo impulse response of the summed output is focused with acceptably low side lobes. Analytical beam pattern analysis and simulation results using a linear array show that the proposed spatial filtering method can provide more improved spatial resolution and contrast-to-noise ratio (CNR) compared with conventional dynamic receive focusing (DRF) method by implementing two-way dynamically focused beam pattern throughout the field.

Development of line-scanning two-photon microscopy based on spatial and temporal focusing for tryptophan based auto fluorescence imaging (고속 트립토판 자가형광 이미징을 위한 시공간적 집중 기반의 라인 스캐닝 이광자 현미경 개발)

  • Lee, Jun Ho;Nam, Hyo Seok;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.41-45
    • /
    • 2013
  • Two-photon microscopy (TPM) is minimally-invasive 3D fluorescence microscopy based on nonlinear excitation, and TPM can visualize cellular structures based on auto-fluorescence. Line-scanning TPM is one of high-speed TPM methods without sacrificing the image resolution by using spatial and temporal focusing. In this paper, we developed line-scanning TPM based on spatial and temporal focusing for auto-fluorescence imaging by exciting the tryptophan. Laser source for this system was an optical parametric oscillator (OPO) and it made near 570 nm femtosecond pulse laser. It had 200fs pulse width and 1.72 nm bandwidth, so that the achievable depth resolution was 2.41um and field of view (FOV) is 10.8um. From the characterization, our system has 3.0 um depth resolution and 12.3 um FOV. We visualized fixed leukocyte cell sample and compared with point scanning system.

Defocusing image generation corresponding to focusing plane by using spatial information of 3D objects (3차원 물체의 공간정보를 이용한 임의의 집속면에 대응하는 디포커싱 영상 구현)

  • Jang, Jae-Young;Kim, Young-Il;Shin, Donghak;Lee, Byung-Gook;Lee, Joon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.981-988
    • /
    • 2013
  • In this paper, we propose a method to generate defocusing images at the focusing plane using the 3D spatial information of object through pickup process of integral imaging technique. In the proposed method, the focusing and defocusing images are generated by the convolution operation between elemental images and ${\delta}$ function array. We observed the image difference by defocusing degree according to the distance of focusing plane. To show the feasibility of the proposed method, some preliminary experiments are carried out and the results are presented.

A Study on the Quality Evaluation Method of Spatial Database - Focusing on Land Database - (공간데이터베이스의 품질평가 방법에 관한 연구 - 토지데이터베이스를 중심으로 -)

  • 김미정;안종천;조우현
    • Spatial Information Research
    • /
    • v.11 no.4
    • /
    • pp.327-340
    • /
    • 2003
  • Quality elements and evaluation methods should be considered according to the characteristics of spatial database. The purpose of this study is to propose specific methods for quality evaluation focusing on land database which are an important parts of spatial database. Through the study, of quality evaluation for selected quality elements are specified, which are based on the construction processes of the topogaphical database, cadastral database, and zoning database. Position accuracy, attribute accuracy, consistency, completeness, temporal accuracy, believability, and lineage are selected as the quality elements of land database. A various statistical and mathematical skills are proposed for measurement and assesment methods of quality elements.

  • PDF