• Title/Summary/Keyword: spatial encryption

Search Result 43, Processing Time 0.024 seconds

Key Phase Mask Updating Scheme with Spatial Light Modulator for Secure Double Random Phase Encryption

  • Kwon, Seok-Chul;Lee, In-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.280-285
    • /
    • 2015
  • Double random phase encryption (DRPE) is one of the well-known optical encryption techniques, and many techniques with DRPE have been developed for information security. However, most of these techniques may not solve the fundamental security problem caused by using fixed phase masks for DRPE. Therefore, in this paper, we propose a key phase mask updating scheme for DRPE to improve its security, where a spatial light modulator (SLM) is used to implement key phase mask updating. In the proposed scheme, updated key data are obtained by using previous image data and the first phase mask used in encryption. The SLM with the updated key is used as the second phase mask for encryption. We provide a detailed description of the method of encryption and decryption for a DRPE system using the proposed key updating scheme, and simulation results are also shown to verify that the proposed key updating scheme can enhance the security of the original DRPE.

Watermarking Algorithm using LSB for Color Image with Spatial Encryption

  • Jung, Soo-Mok
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.242-245
    • /
    • 2019
  • In this paper, watermark embedding technique was proposed to securely conceal the watermark in color cover image by applying the spatial encryption technique. The embedded watermak can be extracted from stego-image without loss. The quality of the stego-image is very good. So it is not possible to visually distinguish the difference between the original cover image and the stego-image. The validity of the proposed technique was verified by mathematical analysis. The proposed watermark embedding technique can be used for intellectual property protection, military, and medical applications that require high security.

An Enhancement Method of Document Restoration Capability using Encryption and DnCNN (암호화와 DnCNN을 활용한 문서 복원능력 향상에 관한 연구)

  • Jang, Hyun-Hee;Ha, Sung-Jae;Cho, Gi-Hwan
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • This paper presents an enhancement method of document restoration capability which is robust for security, loss, and contamination, It is based on two methods, that is, encryption and DnCNN(DeNoise Convolution Neural Network). In order to implement this encryption method, a mathematical model is applied as a spatial frequency transfer function used in optics of 2D image information. Then a method is proposed with optical interference patterns as encryption using spatial frequency transfer functions and using mathematical variables of spatial frequency transfer functions as ciphers. In addition, by applying the DnCNN method which is bsed on deep learning technique, the restoration capability is enhanced by removing noise. With an experimental evaluation, with 65% information loss, by applying Pre-Training DnCNN Deep Learning, the peak signal-to-noise ratio (PSNR) shows 11% or more superior in compared to that of the spatial frequency transfer function only. In addition, it is confirmed that the characteristic of CC(Correlation Coefficient) is enhanced by 16% or more.

Practical Encryption and Decryption System using Iterative Phase Wrapping Method (반복적인 위상 랩핑 방법을 이용한 실질적인 암호화 및 복호화 시스템)

  • Seo, Dong-Hoan;Lee, Sung-Geun;Kim, Yoon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.955-963
    • /
    • 2008
  • In this paper, we propose an improved practical encryption and fault-tolerance decryption method using a non-negative value key and random function obtained with a white noise by using iterative phase wrapping method. A phase wrapping operating key, which is generated by the product of arbitrary random phase images and an original phase image. is zero-padded and Fourier transformed. Fourier operating key is then obtained by taking the real-valued data from this Fourier transformed image. Also the random phase wrapping operating key is made from these arbitrary random phase images and the same iterative phase wrapping method. We obtain a Fourier random operating key through the same method in the encryption process. For practical transmission of encryption and decryption keys via Internet, these keys should be intensity maps with non-negative values. The encryption key and the decryption key to meet this requirement are generated by the addition of the absolute of its minimum value to each of Fourier keys, respectively. The decryption based on 2-f setup with spatial filter is simply performed by the inverse Fourier transform of the multiplication between the encryption key and the decryption key and also can be used as a current spatial light modulator technology by phase encoding of the non-negative values. Computer simulations show the validity of the encryption method and the robust decryption system in the proposed technique.

An Advanced Color Watermarking Technique using Various Spatial Encryption Techniques (다양한 공간적 암호화 기법을 적용한 개선된 컬러 영상 워터마킹 기법)

  • Jung, Soo-Mok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.262-266
    • /
    • 2020
  • In this paper, we proposed an effective technique for hiding the watermark in the LSB of a color image by applying spatial encryption techniques. Even if the watermark hidden in the LSB of the image is extracted, the information of the extracted watermark cannot be decrypted because the watermark is encrypted using various spatial encryption techniques. Therefore, if the watermark is concealed in the LSB using the spatial encryption techniques proposed in this paper, the security is greatly improved compared to the existing technique of embedding the watermark in the LSB. When watermarking is performed by applying the proposed technique, the image quality of the watermark-concealed image is very good, so it is impossible to distinguish it from the original image, and the watermark, which is confidential data, can be extracted from the watermarked image without loss. The performance of the proposed technique was mathematically analyzed and the superiority of the proposed technique was confirmed through experiments. When the watermark was concealed by applying the proposed technique to Lenna, airplane, Tiffany, and pepper images having a size of 512×512, the PSNR values of the watermarked images were 53.91dB, 54.10dB, 54.09dB, and 54.13dB, respectively.

Color Image Encryption using MLCA and Bit-oriented operation (MLCA와 비트 단위 연산을 이용한 컬러 영상의 암호화)

  • Yun, Jae-Sik;Nam, Tae-Hee;Cho, Sung-Jin;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.141-143
    • /
    • 2010
  • This paper presents a problem of the existing encryption method using MLCA or complemented MLCA and propose a method to resolve this problem. With the existing encryption methods, the result of encryption is affected by the original image because of spatial redundancy of adjacent pixels. In this proposed method, we transform spatial coordinates of all pixels into encrypted coordinates. We also encrypt color values of the original image by operating XOR with pseudo-random numbers. This can solve the problem of existing methods and improve the levels of encryption by randomly encrypting pixel coordinates and pixel values of original image. The effectiveness of the proposed method is proved by conducting histogram, key space analysis.

  • PDF

Reversible Data Hiding Technique using Encryption Technique and Spatial Encryption Technique (암호화 기법 및 공간적인 암호화 기법을 사용한 가역 데이터 은닉기법)

  • Jung, Soo-Mok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.632-639
    • /
    • 2021
  • In this paper, we proposed a reversible data hiding technique that greatly enhances the security of confidential data by encrypting confidential data and then spatially encrypting the encrypted confidential data and hiding it in the cover image. When a result image is generated by hiding the encrypted confidential data in the cover image using a spatial encryption technique, the quality of the result image is very good, and the original cover image and the result image cannot be visually distinguished. Since the encrypted confidential data is spatially encrypted and concealed, it is not possible to know where the encrypted confidential data is concealed in the result image, and the encrypted confidential data cannot be extracted from the result image. Even if the encrypted confidential data is extracted, the original confidential data is not known because the confidential data is encrypted. Therefore, if confidential data is concealed in images using the proposed technique, the security of confidential data is greatly improved. The proposed technique can be effectively used in medical and military applications.

Gradual Encryption of Medical Image using Non-linear Cycle and 2D Cellular Automata Transform

  • Nam, Tae Hee
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1279-1285
    • /
    • 2014
  • In this paper, we propose on image encryption method which uses NC(Non-linear Cycle) and 2D CAT(Two-Dimensional Cellular Automata Transform) in sequence to encrypt medical images. In terms of the methodology, we use NC to generate a pseudo noise sequence equal to the size of the original image. We then conduct an XOR operation of the generated sequence with the original image to conduct level 1 NC encryption. Then we set the proper Gateway Values to generate the 2D CAT basis functions. We multiply the generated basis functions by the altered NC encryption image to conduct the 2nd level 2D CAT encryption. Finally, we verify that the proposed method is efficient and extremely safe by conducting an analysis of the key spatial and sensitivity analysis of pixels.

A Simple Encryption Technology for Space-Time Block Coding (시공간 블록 코딩에 적용가능한 간단한 암호화 기법)

  • Jung, Hyeok-Koo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 2018
  • This paper proposes a simple encryption technology for space-time block coding algorithm. Space-time block coding algorithm uses two antennas in transmitting data which consists of original data and transformed data for the purpose of combining in the receiver. This kind of two transmission antenna data could be exchanged and transmitted on each other's antenna individually, which can be used as a simple encryption algorithm. Encryption timing control informations should be shared between transmitter and receiver beforehand. It is shown that the proposed architecture can give performance enhancement compared with no encryption cases.

A Controllable Parallel CBC Block Cipher Mode of Operation

  • Ke Yuan;Keke Duanmu;Jian Ge;Bingcai Zhou;Chunfu Jia
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.24-37
    • /
    • 2024
  • To address the requirement for high-speed encryption of large amounts of data, this study improves the widely adopted cipher block chaining (CBC) mode and proposes a controllable parallel cipher block chaining (CPCBC) block cipher mode of operation. The mode consists of two phases: extension and parallel encryption. In the extension phase, the degree of parallelism n is determined as needed. In the parallel encryption phase, n cipher blocks generated in the expansion phase are used as the initialization vectors to open n parallel encryption chains for parallel encryption. The security analysis demonstrates that CPCBC mode can enhance the resistance to byte-flipping attacks and padding oracle attacks if parallelism n is kept secret. Security has been improved when compared to the traditional CBC mode. Performance analysis reveals that this scheme has an almost linear acceleration ratio in the case of encrypting a large amount of data. Compared with the conventional CBC mode, the encryption speed is significantly faster.