• Title/Summary/Keyword: spatial distribution of temperature

Search Result 483, Processing Time 0.03 seconds

Heat Transfer Analysis of a Heat Exchanger for an Air-Compressor of a Railway Vehicle Based on Cooling Air Flow Measurement (냉각공기 유속 측정에 기반한 철도차량용 공기압축기 열교환기의 열전달 특성 분석)

  • Ahn, Joon;Kim, Moo Sun;Jang, Seongil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.447-454
    • /
    • 2017
  • In this study, local velocity distribution of cooling air in a heat exchanger used in an air compressor for a railway car was measured and heat transfer characteristics of the heat exchanger were analyzed. First, heat transfer coefficient and fin performance of the cooling air side were predicted and was checked if the fin of the heat exchanger was effectively used. Distribution of air flow rate at high temperature side was predicted through pipe network analysis and heat resistance at high temperature and low temperature side were predicted and compared. Spatial distribution of temperature in the interior and surface of the square channel constituting high-temperature side was predicted and appropriateness of the size of the heat exchanger was examined. As a result of the analysis, the present size of the heat exchanger could be reduced and it could be effective to promote heat transfer inside the heat exchanger rather than outside to improve performance of the heat exchanger.

The Effect of Climate Data Applying Temperature Lapse Rate on Prediction of Potential Forest Distribution (기온감율을 적용한 기후자료가 잠재 산림분포 예측에 미치는 영향)

  • Lee, Sang-Chul;Choi, Sung-Ho;Lee, Woo-Kyun;Yoo, Seong-Jin;Byun, Jae-Gyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.19-27
    • /
    • 2011
  • The objective of this study was to suggest technical approaches for preparation and down scaling of climate data used for predicting the potential forest distribution. To predict the forest distribution, we employed a Korean-specific forest distribution model, so-called the TAG(Thermal Analogy Group), and defined the PFT(Plant Functional Types) based on the HyTAG(Hydrological and Thermal Analogy Group). The climate data with 20km spatial resolution were interpolated to fit on the input data format with 1km spatial resolution. Two potential forest distribution maps were estimated using climate data constructed by kriging, one of the interpolation and down-scaling approaches, with and without lapse rate considered. Through the verification process by comparing two potential maps with the actual vegetation map, the forest distribution using the lapse rate was proven to be 38% more accurate.

Basic Study on the Spatial Structure Analysis of the Evaporative Diesel Spray (증발디젤분무의 공간적 구조해석에 관한 기초 연구)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.5-12
    • /
    • 2010
  • The purpose of this study is to analyze heterogeneous distribution of branch-like structure at downstream region of inner spray. The previous many studies about diesel spray structure have yet stayed in the analysis of 2-D structure, and there are very few of informations which are concerned with 3-D analysis of the structure. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray, and also the combustion characteristics of the diesel engines. Therefore, in order to investigate 3-D structure of evaporative spray the laser beam of 2-D plane was used in this study. Liquid fuel was injected from a single-hole nozzle (l/d=5) into a constant-volume vessel under high pressure and temperature in order to visualize the spray phenomena. The incident laser beam was offset on the central axis. From the images analysis taken by offset of laser beam, we examine formation mechanism of heterogeneous distribution by vortex flow at the downstream of the diesel spray. As the experimental results, the branch-like structure formed heterogeneous distribution of the droplets consists of high concentration of vapor phase in the periphery of droplets and spray tip of branch-like structure. Also the 3-D spatial structure of the evaporative diesel spray can be verified by images obtained from 2-D measurement methods.

Spatializing beta-diversity of vascular plants - Application of Generalized Dissimilarity Model in the Republic of Korea - (식생 베타 다양성의 공간화 기법 연구 - Generalized Dissimilarity Model의 국내적용 및 활용 -)

  • Choi, Yu-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.29-45
    • /
    • 2022
  • For biodiversity conservation, the importance of beta-diversity which is changes in the composition of species according to environmental changes has become emphasized. However, given the systematic investigation of species distribution and the accumulation of large amounts of data in the Republic of Korea(ROK), research on the spatialization of beta-diversity using them is insufficient. Accordingly, this research investigated the applicability of the Generalized Dissimilarity Modeling(GDM) to ROK, which can predict and map the similarity of compositional turnover (beta-diversity) based on environmental variables. A brief overview of the statistical description on using GDM was presented, and a model was fitted using the flora distribution data(410,621points) from the National Ecosystem Survey and various environmental spatial data including climate, soil, topography, and land cover. Procedures and appropriated spatial units required to improve the explanatory power of the model were presented. As a result, it was found that geographical distance, temperature annual range, summer temperature, winter precipitation, and soil factors affect the dissimilarity of the vegetation community composition. In addition, as a result of predicting the similarity of vegetation composition across the nation, and classifying them into 20 and 100 zones, the similarity was high mainly in the central inland area, and tends to decrease toward the mountainous areas, southern coastal regions, and island including Jeju island, which means the composition of the vegetation community is unique and beta diversity is high. In addition, it was identified that the number of common species between zones decreased as the geographic distance between zones increased. It classified the spatial distribution of plant community composition in a quantitative and objective way, but additional research and verification are needed for practical application. It is expected that research on community-level biodiversity modeling in the ROK will be conducted more actively based on this study.

A Study on NOx Reduction Mechanism in a Closed Vessel with Opposed Dual Pre-chambers (대향 부연소실이 있는 밀폐연소실 내의 $NO_x$ 저감기구에 대한 연구)

  • Kim, Jae-Heon;Lee, Soo-Gab;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.17-27
    • /
    • 1997
  • It is well known that NOx formation has a strong dependence on the maximum temperature and correspondingly with the maximum chamber pressure of a closed combustion system. However, in a case of impinging-jet-flame (IJF hereafter) combustion with opposed dual pre-chambers, low $NO_x$ formation with high pressure could be achieved, but its mechanism has not been clearly understood so far. In this study, a three-dimensional analysis is adopted to resolve time-variant local properties that might indicate the mechanism of IJF combustion. Numerical results are verified by comparing them with experiments. The IJF combustion in a vessel with no pre-chamber, with single pre-chamber, and with dual pre-chambers is studied. The orifice diameter and the volumetric ratio of pre-chamber are used as geometric parameters. The effects of main-chamber ignition delay time and combustion time of main-chamber, orifice exit velocity, orifice exit temperature, turbulent kinetic energy of main-chamber and spatial distribution of temperature in the latter stage of combustion are investigated. A longer main-chamber ignition delay and a shorter main-chamber combustion time suppress the formation of high temperature region with respect to mean temperature, which consequently results in less NO production.

  • PDF

The Spatial and temporal distributions of NET(Net Effective Temperature) with a Function of Temperature, Humidity and Wind Speed in Korea (한반도의 날씨 스트레스 지수 NET(Net Effective Temperature) 분포의 특성)

  • 허인혜;최영은;권원태
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.1
    • /
    • pp.13-26
    • /
    • 2004
  • This paper examined the possibility of NET application for a relative weather stress index in Korea. The characteristic of NET distribution used temperature, relative humidity, wind speed which forecasting at Korean Meteorological Administration were analyzed. Regional critical values of daily maximum NET of stress index for summer resembled the distribution of daily maximum temperature because were not impacted wind and humidity but temperature. Regional critical values of daily minimum NET of stress index for winter distributed variously compared with summer. The highland region and the northern region of Seoul were impacted of low temperature and coastal region which strong wind. The occurrences of stressful days did not vary in summer, but obviously increased in winter after mid-1990s.

An Analysis of TYLCV Damages under Regional Climate Changes (지역별 기후변화에 따른 토마토 황화잎말림병 피해 분석)

  • Yoon, Jiyoon;Kim, Soyoon;Kim, Kwansoo;Kim, Brian H.S.;An, Donghwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.35-43
    • /
    • 2015
  • The purpose of the research is to analyze damages of TYLCV (Tomato Yellow Leaf Curl Virus) in the context of climate changes and to find the spatial distribution of the damages and characteristics of regions. A TYLCV is generally known for a plant disease related to temperature. Its occurrence rate increases when temperature rises. This disease first occurred in 2008 and rapidly spread nationwide. Due to the spread of a TYLCV, a number of Tomato farms in Korea were damaged severely. To analyze damages of the pest in the context of climate changes, this research estimated production loss under the current situation and RCP scenarios. Additionally, Hot Spot Analysis, LISA, and Cluster analysis were conducted to find spatial distribution and properties of largely damaged regions under RCP scenarios. The results explained that additional production loss was estimated differently by regions with the same temperature rising scenario. Also, largely damaged regions are spatially clustered and factors causing large damages were different across regional cluster groups. It means that certain regions can be damaged more than others by diseases and pests. Furthermore, pest management policy should reflect the properties of each region such as climate conditions, cultivate environment and production technologies. The findings from this research can be utilized for developing rural management plans and pest protection policies.

Spatial distribution of Acartia(Copepoda, Calanoida) species in the southern coastal waters of Korea during summer (하계 남해연안에 출현하는 Acartia속 요각류의 공간 분포)

  • Choi, Seo Yeol;Seo, Min Ho;Shin, Kyoungsoon;Jang, Min-Chul;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.299-308
    • /
    • 2019
  • The occurrence patterns of Acartia(Copepoda; Calanoida) species, A. erythraea, A. hongi, A. hudsonica, A. ohtsukai, and A. sinjiensis, were examined in the southern coastal waters of Korea in the summer in August 2012. The Acartia species had different spatial distribution according to environmental factors. A. erythraea showed higher density in a semi-closed bay (Gamak, Masan) where the dissolved oxygen was low (<2 mg L-1). A. sinjiensis showed a high density in a semi-closed bay when the chlorophyll-a concentration was >2 ㎍ L-1. A. ohtsukai showed a high density at water temperatures >26℃ and low salinity <30. A. hongi and A. hudsonica showed at water temperatures <27℃ and high dissolved oxygen (>5 mg L-1). These results suggest that environmental factors (temperature, salinity, dissolved oxygen, and chlorophyll-a concentration) may affect the spatial distribution of Acartia species dominant in the southern coasts of Korea in summer.

A Study on Examples Applicable to Numerical Land Cover Map Data for Atmospheric Environment Fields in the Metropolitan Area of Seoul - Real Time Calculation of Biogenic CO2 Flux and VOC Emission Due to a Geographical Distribution of Vegetable and Analysis on Sensitivity of Air Temperature and Wind Field within MM5 - (수도권지역에서 수치 토지피복지도 작성을 통한 대기환경부문 활용사례 연구 - MM5내 기온 및 바람장의 민감도 분석과 식생분포에 기인한 VOC 배출량 및 CO2 플럭스의 실시간 산정을 중심으로 -)

  • Moon, Yun-Seob;Koo, Youn-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.661-678
    • /
    • 2006
  • Products developed in this research is a software which can transfer the type of shape(.shp) into the type of ascii using the land cover data and the topography data in the metropolitan area of Seoul. In addition, it can calculate the $CO_2$ flux according to distribution of plants within the land cover data. The $CO_2$ flux is calculated by the experimental equation which is compose of the meteorological parameters such as the solar radiation and the air temperature. The net flux was shown in about $-19ton/km^2$ by removing $CO_2$ through the photosynthesis during daytime, and in 2 ton/km2 by producing it through the respiration during nighttime on 10 August 2004, the maximum day of air temperature during the period of 3yr(2001 to 2004), in the metropolitan area of Seoul. Spatial distribution of the air temperature and the wind field is simulated by substituting the middle classification of the land cover map data, upgraded by the Korean Ministry of Environment(KME), for the land-use data of the United States Geological Survey(USGS) within the Meteorological Mesoscale Model Version 5(MM5) on 10 August 2006 in the metropolitan area of Seoul. Difference of the air temperature between both data was shown in the maximum range of $-2^{\circ}C\;to\;2.9^{\circ}C$, and the air temperature due to the land use data of KME was higher than that of USGS in average $0.4^{\circ}C$. Also, those of wind vectors were meanly lower than that of USGS in daytime and nighttime. Furthermore, the hourly time series of Volatile Organic Components(VOCs) is calculated by using the Biosphere Emission and Interaction System Version 2(BEIS2) including the new land cover data and the meteorological parameters such as the air temperature and so]ar insolation. It is possible to calculate the concentration of ozone due to the biogenic emission of VOCs.