• Title/Summary/Keyword: spatial distribution of temperature

Search Result 481, Processing Time 0.031 seconds

A New Forest Fire Detection Algorithm using Outlier Detection Method on Regression Analysis between Surface temperature and NDVI

  • Huh, Yong;Byun, Young-Gi;Son, Jeong-Hoon;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.574-577
    • /
    • 2006
  • In this paper, we developed a forest fire detection algorithm which uses a regression function between NDVI and land surface temperature. Previous detection algorithms use the land surface temperature as a main factor to discriminate fire pixels from non-fire pixels. These algorithms assume that the surface temperatures of non-fire pixels are intrinsically analogous and obey Gaussian normal distribution, regardless of land surface types and conditions. And the temperature thresholds for detecting fire pixels are derived from the statistical distribution of non-fire pixels’ temperature using heuristic methods. This assumption makes the temperature distribution of non-fire pixels very diverse and sometimes slightly overlapped with that of fire pixel. So, sometimes there occur omission errors in the cases of small fires. To ease such problem somewhat, we separated non-fire pixels into each land cover type by clustering algorithm and calculated the residuals between the temperature of a pixel under examination whether fire pixel or not and estimated temperature of the pixel using the linear regression between surface temperature and NDVI. As a result, this algorithm could modify the temperature threshold considering land types and conditions and showed improved detection accuracy.

  • PDF

Spatial Distribution Characteristics of Vertical Temperature Profile in the South Sea of Jeju, Korea (제주 남부해역 수온 수직구조의 공간분포 특성 파악)

  • Yoon, Dong-Young;Choi, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.162-174
    • /
    • 2012
  • To visualize the characteristics of vertical seawater temperature data, in the ocean having 3D spatial characteristics, 2D thematic maps like horizontal seawater temperature distribution map at each depth layer and 3D volume model using 3D spatial interpolation are used. Although these methods are useful to understand oceanographic phenomena visually, there is a limit to analyze the spatial pattern of vertical temperature distribution or the relationship between vertical temperature characteristics and other oceanic factors (seawater chemistry, marine organism, climate change, etc). Therefore, this study aims to determine the spatial distribution characteristics of vertical temperature profiles in the South Sea of Jeju by quantifying the characteristics of vertical temperature profiles by using an algorithm that can extract the thermocline parameters, such as mixed layer depth, maximum temperature gradient and thermocline thickness. For this purpose spatial autocorrelation index (Moran's I) was calculated including mapping of spatial distribution for three parameters representing the vertical temperature profiles. Also, after grouping study area as four regions by using cluster analysis with three parameters, the characteristics of vertical temperature profiles were defined for each region.

Identifying Spatial Distribution Pattern of Water Quality in Masan Bay Using Spatial Autocorrelation Index and Pearson's r (공간자기상관 지수와 Pearson 상관계수를 이용한 마산만 수질의 공간분포 패턴 규명)

  • Choi, Hyun-Woo;Park, Jae-Moon;Kim, Hyun-Wook;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.391-400
    • /
    • 2007
  • To identify the spatial distribution pattern of water quality in Masan Bay, Pearson's correlation as a common statistic method and Moran's I as a spatial autocorrelation statistics were applied to the hydrological data seasonally collected from Masan Bay for two years ($2004{\sim}2005$). Spatial distribution of salinity, DO and silicate among the hydrological parameters clustered strongly while chlorophyll a distribution displayed a weak clustering. When the similarity matrix of Moran's I was compared with correlation matrix of Pearson's r, only the relationships of temperature vs. salinity, temperature vs. silicate and silicate vs. total inorganic nitrogen showed significant correlation and similarity of spatial clustered pattern. Considering Pearson's correlation and the spatial autocorrelation results, water quality distribution patterns of Masan Bay were conceptually simplified into four types. Based on the simplified types, Moran's I and Pearson's r were compared respectively with spatial distribution maps on salinity and silicate with a strong clustered pattern, and with chlorophyll a having no clustered pattern. According to these test results, spatial distribution of the water quality in Masan Bay could be summed up in four patterns. This summation should be developed as spatial index to be linked with pollutant and ecological indicators for coastal health assessment.

Distribution Analysis of Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser Microscopy (저온 주사 레이저 현미경(LTSLM)을 이용한 YBCO 초전도 선재의 국소적 임계 온도 및 전류 밀도 분포 분석)

  • Park, S.K.;Cho, B.R.;Ri, H.C.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • Distribution of local critical temperature and current density in $YBa_2Cu_3O_{7-\delta}$ (YBCO) coated conductors was analyzed using a Low-temperature Scanning Laser Microscopy (LTSLM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of critical temperature and current density in single and multi bridges. An LTSLM system was modified for a detailed two-dimensional scan without shifting of the sample. We observed a spatial distribution of the critical temperature from the bolometric response, which arises from a focused laser beam at the sample near the superconducting transition. Also we studied the relation between the critical temperature and the current density.

The Field Measurement and Analysis of Indoor Thermal Environment in Large Enclosures (대공간의 실내온열환경 실측 및 분석)

  • Chae, Mun-Byoung;Yang, Jeong-Hoon;Choi, Dong-Ho;Seok, Ho-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.77-88
    • /
    • 2008
  • This research aims to divide the large enclosures according to summer and winter seasons, and to measure changes in the indoor thermal conditions. Also, with regard to air conditioning and exterior environments, it aims to identify the characteristics of indoor thermal environments such as indoor vertical and horizontal temperature distribution in large enclosures, temperature distribution in the audience's seating, indoor surface temperature distribution, wind speed distribution in the audience's seating, and indoor thermal comfort.

  • PDF

Stress variation analysis based on temperature measurements at Zhuhai Opera House

  • Lu, Wei;Teng, Jun;Qiu, Lihang;Huang, Kai
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The Zhuhai Opera House has an external structure consisting of a type of spatial steel, where the stress of steel elements varies with the ambient temperature. A structural health monitoring system was implemented at Zhuhai Opera House, and the temperatures and stresses of the structures were monitored in real time. The relationship between the stress distribution and temperature variations was analysed by measuring the temperature and stresses of the steel elements. In addition to measurements of the structure stresses and temperatures, further simulation analysis was carried out to provide the detailed relationship between the stress distributions and temperature variations. The limited temperature measurements were used to simulate the structure temperature distribution, and the stress distributions of all steel elements of the structure were analysed by building a finite element model of the Zhuhai Opera House spatial steel structure. This study aims to reveal the stress distributions of steel elements in a real-world project based on temperature variations, and to supply a basic database for the optimal construction time of a spatial steel structure. This will not only provide convenient, rapid and safe early warnings and decision-making for the spatial steel structure construction and operation processes, but also improve the structural safety and construction accuracy of steel space structures.

Spring Dominant Copepods and Their Distribution Pattern in the Yellow Sea

  • Kang, Jung-Hoon;Kim, Woong-Seo
    • Ocean Science Journal
    • /
    • v.43 no.2
    • /
    • pp.67-79
    • /
    • 2008
  • We investigated the relationship between mesoscale spatial distribution of environmental parameters (temperature, salinity, and sigma-t), chlorophyll-a concentration and mesozooplankton in the Yellow Sea during May 1996, 1997, and 1998, with special reference to Yellow Sea Bottom Cold Water (YSBCW). Adult calanoid copepods, Calanus sinicus, Paracalanus parvus s.l., Acartia omorii, and Centropages abdominalis were isolated by BVSTEP analysis based on the consistent explainable percentage (-32.3%) of the total mesozooplankton distributional pattern. The copepods, which accounted for 60 to 87% of the total abundances, occupied 73-78% of the copepod community. The YSBCW consistently remained in the northern part of the study area and influenced the spatial distribution of the calanoid copepods during the study periods. Abundances of C. sinicus and P. parvus s.l., which were high outside the YSBCW, were positively correlated with the whole water average temperature (p<0.01). In contrast, the abundances of C. abdominalis and A. omorii, which were relatively high in the YSBCW, were associated with the integrated chl-a concentration based on factor analysis. These results indicate that the YSBCW influenced the mesoscale spatial heterogeneity of average temperature and integrated chl-a concentration through the water column. This consequently affected the spatial distribution pattern of the dominant copepods in association with their respective preferences for environmental and biological parameters in the Yellow Sea during spring.

Estimating Spatio-Temporal Distribution of Climate Factors in Andong Dam Basin (안동댐 유역 기상인자의 시공간분포 추정)

  • Lim, Chul Hee;Moon, Joo Yeon;Lim, Yoon Jin;Kim, Sea Jin;Lee, Woo Kyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.57-65
    • /
    • 2015
  • This study investigates characteristics of time series spatial distribution on climate factors in Andong Dam basin by estimating precise spatio-temporal distribution of hydro-meteorological information. A spatio-temporal distribution by estimating Semi-Variogram based on spatial autocorrelation was examined using the data from ASOS and 7 hydro-meteorological observatories in Andong Dam basin of upper Nakdonggang River, which were installed and observed by NIMR(National Institute of Meterological Research). Also, temperature and humidity as climate variables were analyzed and it was recognized that there is a variability in watershed area by time and months. Regardless of season, an equal spatial distribution of temperature at 14 o'clock and humidity at 10 o'clock was identified, and nonequal distribution was noticed for both variables at 18 o'clock. From monthly spatial analysis, the most unequal distribution of temperature was seen in January, and the most equal distribution was detected in September. The most unequal distribution of humidity was identified in May, and the most equal distribution was seen in January. Unlike in forest, seasonal spatial distribution characteristics were less apparent;but temperature and humidity had respective characteristics in hydro-meteorology.

Determining the Effect of Green Spaces on Urban Heat Distribution Using Satellite Imagery

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Byun, Woo-Hyuk
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.127-135
    • /
    • 2012
  • Urbanization has led to a reduction in green spaces and thus transformed the spatial pattern of urban land use. An increase in air temperature directly affects forest vegetation, phenology, and biodiversity in urban areas. In this paper, we analyze the changing land use patterns and urban heat distribution (UHD) in Seoul on the basis of a spatial assessment. It is necessary to monitor and assess the functions of green spaces in order to understand the changes in the green space. In addition, we estimated the influence of green space on urban temperature using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery and climatic data. Results of the assessment showed that UHD differences cause differences in temperature variation and the spatial extent of temperature reducing effects due to urban green space. The ratio of urban heat area to green space cooling area increases rapidly with increasing distance from a green space boundary. This shows that urban green space plays an important role for mitigating urban heating in central areas. This study demonstrated the importance of green space by characterizing the spatiotemporal variations in temperature associated with urban green spaces.

The Study on the Fuel Vapor Distribution of Homogeneous Charge in a DISI Engine with a 6-Hole Fuel Injector (6공 연료분사기를 장착한 DISI 엔진 내 균질급기의 연료증기 분포 특성)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • The spatial fuel vapor distribution of the homogeneous charge by a 6-hole injector was examined in a optically accessed single cylinder direct injection spark ignition(DISI) engine. The effects of in-cylinder charge motion, and fuel injection pressure, and coolant temperature were investigated using a planar LIF (Laser Induced Fluorescence) technique. It was confirmed that the in-cylinder tumble flow played a little more effective role in the spatial fuel vapor distribution than the swirl flow during the compression stroke at 10 mm and 2 mm planes under cylinder head gasket and the increased fuel injection pressure activated spatial distributions of the fuel vapor. In additions, richer mixtures were concentrated around the cylinder wall by the increase of the coolant temperature.