Distribution Analysis of Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser Microscopy

저온 주사 레이저 현미경(LTSLM)을 이용한 YBCO 초전도 선재의 국소적 임계 온도 및 전류 밀도 분포 분석

  • Park, S.K. (Department of Physics, Kyungpook National University) ;
  • Cho, B.R. (Department of Physics, Kyungpook National University) ;
  • Ri, H.C. (Department of Physics, Kyungpook National University)
  • Received : 2010.08.11
  • Accepted : 2010.09.30
  • Published : 2010.10.31

Abstract

Distribution of local critical temperature and current density in $YBa_2Cu_3O_{7-\delta}$ (YBCO) coated conductors was analyzed using a Low-temperature Scanning Laser Microscopy (LTSLM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of critical temperature and current density in single and multi bridges. An LTSLM system was modified for a detailed two-dimensional scan without shifting of the sample. We observed a spatial distribution of the critical temperature from the bolometric response, which arises from a focused laser beam at the sample near the superconducting transition. Also we studied the relation between the critical temperature and the current density.

Keywords

References

  1. G. W. Crabtree, J. Z. Liu, A. Umezawa, W. K. Kwon, C. H. Sowers, S. K. Malik, B. W. Veal, D. J. Lam, M. B. Brodsky, and J. W. Downey, Phys. Rev. B, vol. 36, pp. 4021-4024 (1987). https://doi.org/10.1103/PhysRevB.36.4021
  2. L. J. Swartzendruber, A. Roitburd, D. L. Kaiser, F. W. Gayle, and L. H. Bennett, Phys. Rev. Lett., vol. 64, pp. 483-486 (1990). https://doi.org/10.1103/PhysRevLett.64.483
  3. R. Gross, D. Koelle, Rep. Prog. Phys. 57 651 (1994). https://doi.org/10.1088/0034-4885/57/7/001
  4. T. Kiss, M. Inoue, T. Shoyama, S. Koyanagi, D. Mitsui, and T. Nakamura, IEEE. Trans. on Appl. Supercond., vol. 17(2), 3211-3214 (2007).
  5. R. Gross, M. Hartmann, K. Hipler, R. P. Huebener, F. Kober, and D. Koelle, IEEE. Trans. on Magnetics, vol. 25, 2250 (1989). https://doi.org/10.1109/20.92756
  6. T. Kiss, M. Inoue, M. Yasunaga, H. Tokutomi, Y. Iijima, K. Kakimoto, T. Saitoh, Y. Tokunaga, T. Izumi, and Y. Shiohara, IEEE. Trans. on Appl. Supercond., vol. 15, 3656 (2005). https://doi.org/10.1109/TASC.2005.849385
  7. L. B. Wang, M. B. Price, C. Kwon, and Q. X. Jia, IEEE. Trans. on Appl. Supercond., vol. 13, 2611 (2003). https://doi.org/10.1109/TASC.2003.811908
  8. L. B. Wang. M. B. Price, J. L. Young, C. Kwon, Timothy J. Haugen, Paul N. Barnes, Physica C 405 240-244 (2004). https://doi.org/10.1016/j.physc.2004.02.003
  9. Clem J R and Huebener R P J. Appl. Phys. 51 2764 (1980). https://doi.org/10.1063/1.327939