본 연구에서는 격자강우량과 격자기반의 수문정보와 연계하여 홍수기 유출량의 시공간적 분포를 파악할 수 있도록 물리적인 운동파(kinematic wave)이론에 근거한 분포형 강우-유출모형을 개발하였다. 이 모형은 홍수기동안의 지표흐름과 지표하 흐름의 시간적 변화와 공간적 분포를 모의할 수 있으며, 전처리과정으로서 ArcGIS 혹은 ArcView등의 GIS 프로그램을 이용하여 모형에 필요한 ASCII형태의 입력 매개변수 자료들을 가공하였다. 또한 후처리과정으로서 모형의 수행결과인 유역내의 유출량 분포 등을 GIS상에서 나타낼 수 있도록 ASCII형태로 출력하도록 구성하였다. 개발된 모형의 적용가능성을 검토하기 위하여 남강댐유역을 대상으로 유역을 500m의 정방형 격자로 분할하고 수계망을 통하여 유역 출구까지 운동파이론에 의해 추적 계산하였으며, 수문곡선 비교결과 재현성 높은 결과를 보여주었다.
본 논문의 목적은 ENSO의 영향에 의한 우리나라 강우의 확률빈도와 공간분포 특성을 분석하는 것이다. 따라서 우리나라 기상관측소의 강우량 자료를 Warm(El Nino), Cold(La Nina), Normal 에피소드에 따라 기간별로 분류하였다. 또한 이렇게 분류한 자료는 Markov Chain 모형을 이용하여 100년의 자료로 모의 발생하였고 에피소드별로 빈도분석을 실시하였다. 빈도분석 결과 에피소드에 따라 각 기상관측소별로 강우의 크기에 영향을 미치고 있음을 알 수 있었다. 또한 군집분석을 실시하여 각 에피소드의 공간적인 영향에 대해서 분석하였다. 결과적으로 Warm(El Nino), Cold(La Nina) and Normal 에피소드로 대표되는 ENSO는 우리나라 강우의 확률빈도과 공간분포에 크게 영향을 미치는 것으로 파악되었다.
Highly pathogenic avian influenza (HPAI) is among the top infectious disease priorities in Korea and the leading cause of economic loss in relevant poultry industry. An understanding of the spatial epidemiology of HPAI outbreak is essential in assessing and managing the risk of the infection. Though previous studies have reported the majority of outbreaks occurred clustered in what are preferred to as densely populated poultry regions, especially in southwest coast of Korea, little is known about the spatial distribution of risk areas vulnerable to HPAI occurrence based on geographic information system (GIS). The main aim of the present study was to develop a GIS-based risk index model for defining potential high-risk areas of HPAI outbreaks and to explore spatial distribution in relative risk index for each 252 Si-Gun-Gu (administrative unit) in Korea. The risk index was derived incorporating seven GIS database associated with risk factors of HPAI in a standardized five-score scale. Scale 1 and 5 for each database represent the lowest and the highest risk of HPAI respectively. Our model showed that Jeollabuk-do, Chungcheongnam-do, Jeollanam-do and Chungcheongbuk-do regions will have the highest relative risk from HPAI. Areas with risk index value over 4.0 were Naju, Jeongeup, Anseong, Cheonan, Kochang, Iksan, Kyeongju and Kimje, indicating that Korea is at risk of HPAI introduction. Management and control of HPAI becomes difficult once the virus are established in domestic poultry populations; therefore, early detection and development of nationwide monitoring system through targeted surveillance of high-risk spots are priorities for preventing the future outbreaks.
본 연구의 목적은 기후변화에 따른 잠재 산림분포 예측에 이용되는 기상 자료의 효과적인 구축 및 규모변환(Down Scaling) 방법을 제시 하는 것이다. 잠재 산림분포 예측을 위해 한국형 산림 분포 모형 TAG(Thermal Analogy Group)의 예측 방법과 HyTAG(Hydrological and Thermal Analogy Group)에서 정의한 식생 기능성 유형(PFT: Plant Functional Types)을 함께 적용하였다. 이를 위해 20km 공간해상도의 기상자료를 1km의 공간해상도에 부합하도록 보간 하였다. 이러한 보간 및 규모변환의 한 가지 방법으로 고도에 따른 기온감율을 적용 및 비적용하여 각각의 과거 잠재 산림분포를 예측하였다. 현존 산림분포도와 비교한 정확도 검증에서 기온감율을 적용한 잠재 산림분포가 약 38% 더 정확한 것으로 나타났다.
기후변화로 인하여 국지성 집중호우가 크게 늘어나고 그로인해 막대한 인적 및 물적 피해를 야기하고 있다. 따라서 강우의 시간적 공간적 특성을 파악하는 것이 중요하다고 할 수 있다. 본 연구에서는 레이다 강우를 이용하여 시공간적 변동성을 고려한 격자형 면적강우량을 산정하기 위하여 추계학적 방법인 칼만필터 기법을 이용하여 지상 강우 관측망과 레이다 강우 관측망을 조합하여 면적강우량을 산정하였다. 또한 전통적인 지상 강우량을 면적강우량으로 전환하는 기법인 Thiessen법, 역거리법, 크리깅 기법을 이용하여 면적강우량을 산정한 후 칼만필터 기법에 의해 보정된 면적 레이다 강우와 비교하였다. 그 결과, 칼만필터 기법에 의해 보정된 레이다 강우는 실제 강우 분포와 유사한 공간분포를 가지는 원시 레이다 강우 분포를 잘 재현하면서도 강우 체적은 우량계 자료의 체적과 유사하게 나타났다. 그리고 안성천 유역을 대상유역으로 선정하여 칼만필터 기법에 의해 보정된 레이다 강우를 물리적 기반의 분포형 모형인 $Vflo^{TM}$ 모형과 준분포형 모형인 ModClark 모형에 적용하여 홍수유출을 모의하였다. 그 결과, $Vflo^{TM}$ 모형은 첨두시간과 첨두치가 관측 수문곡선과 유사하게 모의되었으며 ModClark 모형은 총 유출체적에서 좋은 결과를 나타냈다. 그러나 매개변수 검증에서는 $Vflo^{TM}$ 모형이 ModClark 모형보다 관측 수문곡선을 잘 재현하였다. 이를 통해 지상강우와 레이더 강우를 적절하게 조합하여 정확도 높은 면적강우량을 산정하고 분포형 수문모형과 연계하여 홍수유출모의를 실시할 경우 충분한 적용성을 가지고 있음을 확인할 수 있었다.
Communications for Statistical Applications and Methods
/
제24권6호
/
pp.605-625
/
2017
This paper presents proportional odds cure models to allow spatial correlations by including spatial frailty in the interval censored data setting. Parametric cure rate models with independent and dependent spatial frailties are proposed and compared. Our approach enables different underlying activation mechanisms that lead to the event of interest; in addition, the number of competing causes which may be responsible for the occurrence of the event of interest follows a Geometric distribution. Markov chain Monte Carlo method is used in a Bayesian framework for inferential purposes. For model comparison some Bayesian criteria were used. An influence diagnostic analysis was conducted to detect possible influential or extreme observations that may cause distortions on the results of the analysis. Finally, the proposed models are applied for the analysis of a real data set on smoking cessation. The results of the application show that the parametric cure model with frailties under the first activation scheme has better findings.
Soil carbon(C) is an essential property for characterizing soil quality. Understanding spatial patterns of soil C is particularly limited for mountain areas. This study aims to predict the spatial pattern of soil C using terrain analysis in a steep mountainous area. Specifically, model performances and prediction uncertainties were investigated based on the number of resampling repetitions. Further, important predictors for soil C were also identified. Finally, the spatial distribution of uncertainty was analyzed. A total of 91 soil samples were collected via conditioned latin hypercube sampling and a digital soil C map was developed using support vector regression which is one of the powerful machine learning methods. Results showed that there were no distinct differences of model performances depending on the number of repetitions except for 10-fold cross validation. For soil C, elevation and surface curvature were selected as important predictors by recursive feature elimination. Soil C showed higher values in higher elevation and concave slopes. The spatial pattern of soil C might possibly reflect lateral movement of water and materials along the surface configuration of the study area. The higher values of uncertainty in higher elevation and concave slopes might be related to geomorphological characteristics of the research area and the sampling design. This study is believed to provide a better understanding of the relationship between geomorphology and soil C in the mountainous ecosystem.
Communications for Statistical Applications and Methods
/
제13권1호
/
pp.177-190
/
2006
The aim of this study is to propose a Bayesian model for fitting mortality rate of colon cancer. For the analysis of mortality rate of a disease, factors such as age classes of population and spatial characteristics of the location are very important. The model proposed in this study allows the age class to be a random effect in addition to its conventional role as the covariate of a linear regression, while the spatial factor being a random effect. The model is fitted using Metropolis-Hastings algorithm. Posterior expected predictive deviances, standardized residuals, and residual plots are used for comparison of models. It is found that the proposed model has smaller residuals and better predictive accuracy. Lastly, we described patterns in disease maps for colon cancer.
본 연구는 하천구배에 따라 환경요인 및 생물군집이 변화한다는 하천연속성 개념(River Continuum Concept, RCC)을 금강 수계에 적용하여, 수서곤충 섭식기능군의 공간적 분포 특성과 환경요인 사이의 상관관계를 규명하기 위하여 수행되었다. 이를 위해, 수서곤충 생물군집의 서식에 영향을 미치는 물리 화학적 환경요인들과 생물군집의 분포관계를 단계적 다중회귀분석기법으로 분석하였다. 또한, 주요인으로 선정된 환경요인들에 따른 생물군집의 분포특성을 발생확률 예측기법인 빈도비 모델(Frequency Ratio Model, FRM)과 지리정보시스템(GIS)의 공간분석기법에 적용하여 수서곤충 섭식기능군의 분포예측도를 작성하였다. 연구 결과, 고도, 하폭, 유속, conductivity, 수온, 모래의 함량 등 6개 환경요인의 결정계수($R^2$)가 0.5 이상으로 나타나 수서 곤충 섭식기능군의 분포에 영향을 미치는 주요인으로 선정되었다. 그리고 작성된 분포예측자료와 연구지역에 대하여 기 조사된 실측자료를 비교 검증한 결과, 두 자료 사이의 평균제곱근오차(RMSE)가 0.1892~0.4242로 나타나 예측모델의 신뢰성을 확인할 수 있었다. 이 연구의 결과는 수서곤충 섭식기능군을 이용한 하천생태계의 새로운 평가방법 작성에 활용될 수 있을 것이며, 하천 서식지의 보전 및 복원을 위한 기초자료로 활용될 것으로 판단된다.
고주파를 주로 사용하는 능동소나에서 반사신호는 물체표면의 거울면 반사와 내부의 여러 등가적인 산란자로 형성되며, 이는 물체에 공간적으로 분포된 하이라이트에 의해 특징 된다. 본 연구에서는 기존의 모의표적에 대한 반사신호 합성모델 즉, 랜덤분포 모델, 등간격분포 모델 및 MUTAHID 모델에 대하여 분석하고, 합성된 반사신호 결과특성을 여러 조건에서 비교하였다. 이러한 하이라이트 분포 모델들은 수중표적의 반사신호 합성을 필요로 하는 각종 실시스템의 모의표적 신호 합성에 유용하게 적용될 수 있으리라 생각된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.