The Study on Flood Runoff Simulation using Runoff Model with Gauge-adjusted Radar data

보정 레이더 자료와 유출 모형을 이용한 홍수유출모의에 관한 연구

  • Received : 2009.10.27
  • Accepted : 2010.01.23
  • Published : 2010.04.30

Abstract

Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Therefore, it is important to understand the spatial-temporal features of rainfall. In this study, RADAR rainfall was used to calculate gridded areal rainfall which reflects the spatial-temporal variability. In addition, Kalman-filter method, a stochastical technique, was used to combine ground rainfall network with RADAR rainfall network to calculate areal rainfall. Thiessen polygon method, Inverse distance weighting method, and Kriging method were used for calculating areal rainfall, and the calculated data was compared with adjusted areal RADAR rainfall measured using the Kalman-filter method. The result showed that RADAR rainfall adjusted with Kalman-filter method well-reproduced the distribution of raw RADAR rainfall which has a similar spatial distribution as the actual rainfall distribution. The adjusted RADAR rainfall also showed a similar rainfall volume as the volume shown in rain gauge data. Anseong-Cheon basin was used as a study area and the RADAR rainfall adjusted with Kalman-filter method was applied in $Vflo^{TM}$ model, a physical-based distributed model, and ModClark model, a semi-distributed model. As a result, $Vflo^{TM}$ model simulated peak time and peak value similar to that of observed hydrograph. ModClark model showed good results for total runoff volume. However, for verifying the parameter, $Vflo^{TM}$ model showed better reproduction of observed hydrograph than ModClark model. These results confirmed that flood runoff simulation is applicable in domestic settings(in South Korea) if highly accurate areal rainfall is calculated by combining gauge rainfall and RADAR rainfall data and the simulation is performed in link to the distributed hydrological model.

기후변화로 인하여 국지성 집중호우가 크게 늘어나고 그로인해 막대한 인적 및 물적 피해를 야기하고 있다. 따라서 강우의 시간적 공간적 특성을 파악하는 것이 중요하다고 할 수 있다. 본 연구에서는 레이다 강우를 이용하여 시공간적 변동성을 고려한 격자형 면적강우량을 산정하기 위하여 추계학적 방법인 칼만필터 기법을 이용하여 지상 강우 관측망과 레이다 강우 관측망을 조합하여 면적강우량을 산정하였다. 또한 전통적인 지상 강우량을 면적강우량으로 전환하는 기법인 Thiessen법, 역거리법, 크리깅 기법을 이용하여 면적강우량을 산정한 후 칼만필터 기법에 의해 보정된 면적 레이다 강우와 비교하였다. 그 결과, 칼만필터 기법에 의해 보정된 레이다 강우는 실제 강우 분포와 유사한 공간분포를 가지는 원시 레이다 강우 분포를 잘 재현하면서도 강우 체적은 우량계 자료의 체적과 유사하게 나타났다. 그리고 안성천 유역을 대상유역으로 선정하여 칼만필터 기법에 의해 보정된 레이다 강우를 물리적 기반의 분포형 모형인 $Vflo^{TM}$ 모형과 준분포형 모형인 ModClark 모형에 적용하여 홍수유출을 모의하였다. 그 결과, $Vflo^{TM}$ 모형은 첨두시간과 첨두치가 관측 수문곡선과 유사하게 모의되었으며 ModClark 모형은 총 유출체적에서 좋은 결과를 나타냈다. 그러나 매개변수 검증에서는 $Vflo^{TM}$ 모형이 ModClark 모형보다 관측 수문곡선을 잘 재현하였다. 이를 통해 지상강우와 레이더 강우를 적절하게 조합하여 정확도 높은 면적강우량을 산정하고 분포형 수문모형과 연계하여 홍수유출모의를 실시할 경우 충분한 적용성을 가지고 있음을 확인할 수 있었다.

Keywords

References

  1. Ahnert, P.R., Krajewski, W.F., and Johnson, E. R., (1986), "Kalman filter estimation of radar-rainfall mean field bias", 23rd Radar Meteorology Conf. Amer. Meteor. Soc., pp. JP33-37
  2. Anagnostou, E.N., Krajewski, W.F., Seo, D.-J., Johnson, E.R. (1998), "Mean-field rainfall bias studies for WSR-88D", Journal of hydrologic engineering, Vol. 3, No. 3, pp. 149-159 https://doi.org/10.1061/(ASCE)1084-0699(1998)3:3(149)
  3. Byung Sik Kim, Jun Bum Hong, Bo Kyung Kim, Hung Soo Kim(2007). "Sensitivity Analysis for $Vflo^{TM}$ Model In Jungnang", 2007 Conf. Korea Society of Civil Engineers, Korea, pp. 2010- 2014
  4. Byung Sik Kim, Jun Bum Hong , Hung Soo Kim, Seok Young Yoon ,Byung Ha Seoh(2007). "Flood simulation using rainfall data from rain gauges and radar by Conditional Merging method", IAHR
  5. Chumchean, S., Sharma, A., Seed, A. (2003). "Radar rainfall error variance and its impact on radar rainfall calibration", Journal of Physics and chemistry of the earth, Vol. 28 pp. 27-39 https://doi.org/10.1016/S1474-7065(03)00005-6
  6. Dinku, T., Ananostou, E.N., Borga, M.(2002). "Improving radar based estimation of rainfall over complex terrain", Journal of Applied Meteorology, Vol.41, pp. 1163-1178 https://doi.org/10.1175/1520-0450(2002)041<1163:IRBEOR>2.0.CO;2
  7. Emerson, C.H. (2003), "Evaluation of the additive Effects of storm water detention basins of the watershed", Univ. of Drexel, Philadelphia
  8. Henry, H. R.(1998). "Kalman filter in real-time hydrologic forecasting", A tutorial Third Water Resources Operation and Management Workshop, pp. 184-194
  9. Hoblit, B.C. and D. C. Curtis (2005), "Radar Estimates + gauge Data: A Perfect Union", Southwest Hydrology, pp. 22-24
  10. Hydrologic Engineering Center(2003). "HEC-GeoHMS User's Manual", US Army Corps of Engineers
  11. Hydrologic Engineering Center(2005). "HEC-DSSVue User's Manual", US Army Corps of Engineers
  12. James A. Smith, Witold F. Krajewski (1991), "Estimation of the Mean Field Bias of Radar Rainfall Estimates", Journal of Applied Meteorology, Vol. 30 pp. 397-412 https://doi.org/10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2
  13. Johnson, D., Smith, M., Koren, V., and Finnerty, B. (1999), "Comparing mean areal precipitation estimates from NEXRAD and rain gauge network", Journal Hydrologic Engineering, Vol. 4, No. 2, pp. 117-124 https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(117)
  14. Kalman, R.E. (1960), "A new approach to linear filtering and prediction problems" Journal of Basic Engineering, 82 (D), pp. 5-45
  15. Kalman, R. E. and Bucy, R. S.(1961). "New Results in Linear Filtering and Prediction Theory", Journal of Basic Engineering Transaction of the ASME, Vol. 83, 1961, pp. 95-108 https://doi.org/10.1115/1.3658902
  16. Koistinen, J. and Puhakka, T. (1981). "An improved spatial gauge-radar adjustment technique", proc. 20th Conference on Radar Meteorology, AMS, pp. 179-186
  17. Krajewski, W.F., Lakshmi, V., Georgakakos, K.P., and Jain, S.C. (1991), "A monte Carlo study of rainfall sampling effect on a distributed catchment model", Water Resources Research, Vol. 27, No. 1, pp. 119-128 https://doi.org/10.1029/90WR01977
  18. Kull, D.W., and Feldman, A.D. (1998), "Volution of Clark' Unit Graph Method to Spatially Distributed Runoff." Journal of Hydrologic Engineering, Vol. 3, No. 1, pp. 9-19 https://doi.org/10.1061/(ASCE)1084-0699(1998)3:1(9)
  19. Kull, D.W., and Feldman, A.D. (1998), "Volution of Clark' Unit Graph Method to Spatially Distributed Runoff." Journal of Hydrologic Engineering, Vol. 3, No. 1, pp. 9-19 https://doi.org/10.1061/(ASCE)1084-0699(1998)3:1(9)
  20. Ogden, F.L., and Julien, P.Y. (1994), "Runoff model sensitivity to radar rainfall resolution", Journal of Hydrology, Vol. 158, pp. 1-18 https://doi.org/10.1016/0022-1694(94)90043-4
  21. Seo, D. J., J.P. Breidenbach, E.R. Johnson (1999), "Real-time estimation of mean field bias in radar rainfall data", Journal of Hydrology, pp. 131-147
  22. Sun, G., Amatya, D,M., Mcnulty, S.G., Skaggs, R.W, Hughes, J.H. (2000), "Climate change impact on the hydrology and productivity of a pine plantation. Journal of the American Water Resources Association", Vol. 36(2), pp. 367-374 https://doi.org/10.1111/j.1752-1688.2000.tb04274.x
  23. Vieux, B.E., Bedient, P.B.(2004). "Assessing Urban Hydrologic Prediction Accuracy Through Event Reconstruction", Journal of Hydrology, August 2004, pp. 217-236
  24. Vieux, B. E.(2004). "Distributed Hydrologic Modeling Using GIS", Second Edition, ISBN:1-4020-2459-2. Kluwer Academic Publishers, Dordrecht, pp.293.
  25. Vieux, B. E. and Vieux, J. E.(2003). "Operation Deployment of a Physicsbased Distributed Rainfall-runoff Model for Flood Forecasting in Taiwan", International Symposium on information from Weather Radar and Distributed Hydrologic Modeling July 7-8.
  26. Vieux, B.E.(2004). "Distributed Hydrologic Modeling Using GIS", Kluwer Academic Publishers"
  27. Vieux, B.E. and Koehler, E.(2005). $Vflo^{TM}$ Model Advanced Training
  28. Vieux, B.E.,(2001). "Distributed Hydrologic Modeling Using GIS", ISBN 0-7923-7002-3, Kluwer Academic Publishers, Norwell, Massachusetts, Wat. Sci. Tech. Series, Vol. 38. pp. 293.
  29. Vieux, B.E., Bedient, P.B.(2004). "Evaluation of urban hydrologic prediction accuracy for real-time forecasting using radar", American Meteorological Society 18th Conference on Hydrology, Seattle, WA.
  30. Vieux, B.E., Cui, Z., Gaur, A.(2004). "Evaluation of a physics-based distributed hydrologic model for flood forecasting", Journal of Hydrology Vol.298, pp. 155-154. https://doi.org/10.1016/j.jhydrol.2004.03.035
  31. Vieux, B.E., Vieux, J.E.(2002). "Vflo: a real-time distributed hydrologic model", Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, July 28-August 1.
  32. Vieux,B.E. and Bedient, P.B.(2004). "Assessing urban hydrologic prediction accuracy through event reconstruction", Journal of Hydrology Vol.299, pp. 217-236. https://doi.org/10.1016/S0022-1694(04)00366-X