• 제목/요약/키워드: spatial cluster detection

검색결과 17건 처리시간 0.021초

Salient Object Detection Based on Regional Contrast and Relative Spatial Compactness

  • Xu, Dan;Tang, Zhenmin;Xu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2737-2753
    • /
    • 2013
  • In this study, we propose a novel salient object detection strategy based on regional contrast and relative spatial compactness. Our algorithm consists of four basic steps. First, we learn color names offline using the probabilistic latent semantic analysis (PLSA) model to find the mapping between basic color names and pixel values. The color names can be used for image segmentation and region description. Second, image pixels are assigned to special color names according to their values, forming different color clusters. The saliency measure for every cluster is evaluated by its spatial compactness relative to other clusters rather than by the intra variance of the cluster alone. Third, every cluster is divided into local regions that are described with color name descriptors. The regional contrast is evaluated by computing the color distance between different regions in the entire image. Last, the final saliency map is constructed by incorporating the color cluster's spatial compactness measure and the corresponding regional contrast. Experiments show that our algorithm outperforms several existing salient object detection methods with higher precision and better recall rates when evaluated using public datasets.

Optimizing the maximum reported cluster size for normal-based spatial scan statistics

  • Yoo, Haerin;Jung, Inkyung
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.373-383
    • /
    • 2018
  • The spatial scan statistic is a widely used method to detect spatial clusters. The method imposes a large number of scanning windows with pre-defined shapes and varying sizes on the entire study region. The likelihood ratio test statistic comparing inside versus outside each window is then calculated and the window with the maximum value of test statistic becomes the most likely cluster. The results of cluster detection respond sensitively to the shape and the maximum size of scanning windows. The shape of scanning window has been extensively studied; however, there has been relatively little attention on the maximum scanning window size (MSWS) or maximum reported cluster size (MRCS). The Gini coefficient has recently been proposed by Han et al. (International Journal of Health Geographics, 15, 27, 2016) as a powerful tool to determine the optimal value of MRCS for the Poisson-based spatial scan statistic. In this paper, we apply the Gini coefficient to normal-based spatial scan statistics. Through a simulation study, we evaluate the performance of the proposed method. We illustrate the method using a real data example of female colorectal cancer incidence rates in South Korea for the year 2009.

스캔 통계량을 이용한 암 클러스터 탐색 (Cancer cluster detection using scan statistic)

  • 한준희;이민정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1193-1201
    • /
    • 2016
  • 공간 또는 시공간 데이터에서 다른 지역에 비해 유난히 높은 위험률을 보이는 소위 핫 스팟 (hot spot)으로 불리는 클러스터 (cluster)를 찾으려고 하는 경우가 많다. 기존의 많은 방법들은 이러한 클러스터 패턴이 존재하는지에 대한 해답만 주었지만, 최근의 많은 방법들은 클러스터의 위치, 모양, 크기뿐만 아니라 찾아진 클러스터가 통계적으로 유의한지까지 검정해준다. 본 논문에서는 이러한 다양한 방법 중 가장 많이 사용되는 클러스터 탐색 방법 중 하나인 스캔 통계량을 이용한 방법을 소개하고 그 방법이 구현된 무료 소프트웨어 SaTScan을 이용한 결과를 보여주고 장단점을 논하고자 한다. 미국 국립암센터의 SEER 프로그램에서 제공하는 미국의 각 카운티별 암 사망자 자료 중 2006년 여성 폐암 사망자 데이터를 예시 데이터로 사용하여 스캔 통계량을 이용하여 구한 클러스터 탐색 결과를 제시하고 비슷한 연구를 하고자는 연구자에게 도움을 주고자 한다.

공간 클러스터의 범역 설정을 위한 GIS-기반 방법론 연구 -수정 AMOEBA 기법- (A GIS-Based Method for Delineating Spatial Clusters: A Modified AMOEBA Technique)

  • 이상일;조대헌;손학기;채미옥
    • 대한지리학회지
    • /
    • 제45권4호
    • /
    • pp.502-520
    • /
    • 2010
  • 이 연구의 주된 목적은 공간 클러스터의 범역을 설정하는 GIS-기반 방법론을 개발하는 것이다. 주요 과제는 지리적 경계 분석과 LISA-기반 클러스터 탐지에 대한 기존 방법론을 비교 검토함으로써 진일보한 방법론을 고안하고, 그것을 실행하는 GIS-기반 프로그램을 개발하는 것이다. 주요 연구 결과는 다음과 같다. 첫째, 기존 방법론을 검토한 결과, LISA를 이용한 AMOEBA 기법이 가장 타당한 것으로 판단되었다. 둘째, 수정 AMOEBA 기법의 알고리즘을 확립했으며 실행 소프트웨어를 상용 GIS 프로그램의 확장 기능형태로 개발하였다. 셋째, 수정 AMOEBA 기법을 실험 데이터와 실 데이터에 적용한 결과 제안된 기법의 유용성이 확인되었다.

Shot Group and Representative Shot Frame Detection using Similarity-based Clustering

  • Lee, Gye-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권9호
    • /
    • pp.37-43
    • /
    • 2016
  • This paper introduces a method for video shot group detection needed for efficient management and summary of video. The proposed method detects shots based on low-level visual properties and performs temporal and spatial clustering based on visual similarity of neighboring shots. Shot groups created from temporal clustering are further clustered into small groups with respect to visual similarity. A set of representative shot frames are selected from each cluster of the smaller groups representing a scene. Shots excluded from temporal clustering are also clustered into groups from which representative shot frames are selected. A number of video clips are collected and applied to the method for accuracy of shot group detection. We achieved 91% of accuracy of the method for shot group detection. The number of representative shot frames is reduced to 1/3 of the total shot frames. The experiment also shows the inverse relationship between accuracy and compression rate.

수질 및 유량자료의 기초통계량 분석에 따른 공간분포 파악을 위한 SOM의 적용 (Application of SOM for the Detection of Spatial Distribution considering the Analysis of Basic Statistics for Water Quality and Runoff Data)

  • 진영훈;김용구;노경범;박성천
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.735-741
    • /
    • 2009
  • In order to support the basic information for planning and performing the environment management such as Total Maximum Daily Loads (TMDLs), it is highly recommended to understand the spatial distribution of water quality and runoff data in the unit watersheds. Therefore, in the present study, we applied Self-Organizing Map (SOM) to detect the characteristics of spatial distribution of Biological Oxygen Demand (BOD) concentration and runoff data which have been measured in the Yeongsan, Seomjin, and Tamjin River basins. For the purpose, the input dataset for SOM was constructed with the mean, standard deviation, skewness, and kurtosis values of the respective data measured from the stations of 22-subbasins in the rivers. The results showed that the $4{\times}4$ array structure of SOM was selected by the trial and error method and the best performance was revealed when it classified the stations into three clusters according to the basic statistics. The cluster-1 and 2 were classified primarily by the skewness and kurtosis of runoff data and the cluster-3 including the basic statistics of YB_B, YB_C, and YB_D stations was clearly decomposed by the mean value of BOD concentration showing the worst condition of water quality among the three clusters. Consequently, the methodology based on the SOM proposed in the present study can be considered that it is highly applicable to detect the spatial distribution of BOD concentration and runoff data and it can be used effectively for the further utilization using different water quality items as a data analysis tool.

Detection of Multiple Salient Objects by Categorizing Regional Features

  • Oh, Kang-Han;Kim, Soo-Hyung;Kim, Young-Chul;Lee, Yu-Ra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.272-287
    • /
    • 2016
  • Recently, various and effective contrast based salient object detection models to focus on a single target have been proposed. However, there is a lack of research on detection of multiple objects, and also it is a more challenging task than single target process. In the multiple target problem, we are confronted by new difficulties caused by distinct difference between properties of objects. The characteristic of existing models depending on the global maximum distribution of data point would become a drawback for detection of multiple objects. In this paper, by analyzing limitations of the existing methods, we have devised three main processes to detect multiple salient objects. In the first stage, regional features are extracted from over-segmented regions. In the second stage, the regional features are categorized into homogeneous cluster using the mean-shift algorithm with the kernel function having various sizes. In the final stage, we compute saliency scores of the categorized regions using only spatial features without the contrast features, and then all scores are integrated for the final salient regions. In the experimental results, the scheme achieved superior detection accuracy for the SED2 and MSRA-ASD benchmarks with both a higher precision and better recall than state-of-the-art approaches. Especially, given multiple objects having different properties, our model significantly outperforms all existing models.

Compact Binaries Ejected from Globular Clusters as GW Sources

  • 배영복;김정리;이형목
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.57.2-57.2
    • /
    • 2013
  • Based on N-body simulations, we find out that significant fraction of dynamically formed BH-BH (10 $M_{\odot}$ and NS-NS (1.4 $M_{\odot$ ecah) binaries are ejected from globular clusters. About 30 percent of compact stars are ejected in the form of binary. The merging time of ejected binary depends on the velocity dispersion of globular cluster. Some of ejected binaries have merging time-scales shorter than Hubble time and are expected to produce gravitational waves that can be detectable by the advanced ground-based interferometers. The merger rates of ejected BH-BH and NS-NS binaries per globular cluster are estimated to be 3.5 and 17 per Gyr, respectively. Assuming the spatial density of globular clusters as 8.4 $h^3$ clusters $Mpc^{-3}$ and extrapolating to the horizon distance of the advanced LIGO-Virgo network, we expect the detection rates solely attributed to BH-BH and NS-NS with cluster origin are to be 42 and 1.7 $yr^{-1}$, respectively. Besides, we find out that BH-NS binary ejection hardly occurs in globular clusters and dynamically formed compact binaries may possibly be the source of short GRBs whose locations are far from host galaxies.

  • PDF

영역정보기반의 유전자알고리즘을 이용한 텍스트 후보영역 검출 (Detection of Text Candidate Regions using Region Information-based Genetic Algorithm)

  • 오준택;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.70-77
    • /
    • 2008
  • 본 논문은 화소 단위의 정보가 아닌 분할된 영역들의 정보를 기반으로 유전자 알고리즘을 이용한 텍스트 후보영역 검출방안을 제안한다. 먼저, 영상분할을 수행하기 위해 색상별 화소분류와 비동질적인 군집의 감소를 위한 영역 단위의 재분류 알고리즘을 수행한다. 색상별 화소분류에 이용되는 EWFCM(Entropy-based Weighted Fuzzy C-Means) 알고리즘은 공간정보를 추가한 개선된 FCM 알고리즘으로써, 잡음에 강건한 특징을 가진다. EWFCM 알고리즘에 의해 분류된 화소들의 군집정보를 기반으로 수행되는 영역 단위의 재분류는 화소나 군집 단위의 재분류에 비해 효과적으로 영상에 존재하는 비동질적인 군집들을 감소시킬 수 있다. 그리고 텍스트 후보영역 검출은 분할된 영역들로부터 추출한 방향성 에지 성분에 대한 분산값 및 에너지, 크기, 개수 등의 정보를 기반으로 유전자알고리즘에 의해 수행된다. 이는 화소 단위의 정보를 이용한 방법보다 더 명확한 텍스트 영역정보를 획득할 수 있으며, 향후 자동문자인식에서 좀 더 손쉽게 이용될 수 있다. 실험 결과 제안한 분할방법은 기존 방법이나 화소나 군집 기반의 재분류보다 좋은 결과를 보였으며, 텍스트 후보영역 검출에서도 화소 단위의 정보를 이용한 기존 방법보다 더 좋은 결과를 보여 제안방법의 유효성을 확인하였다.

대칭성 분석과 레벨셋을 이용한 자기공명 뇌영상의 자동 종양 영역 분할 방법 (Automatic Tumor Segmentation Method using Symmetry Analysis and Level Set Algorithm in MR Brain Image)

  • 김보람;박근혜;김욱현
    • 융합신호처리학회논문지
    • /
    • 제12권4호
    • /
    • pp.267-273
    • /
    • 2011
  • 본 논문은 자기공명 뇌영상을 대상으로 뇌종양 영역을 자동으로 분할하기 위한 방법을 제안한다. 정상적인 뇌영상은 좌우로 대칭인 특징을 지니는 반면에 종양이 존재하는 뇌영상은 종양세포와 부종 및 괴사로 인해 비대칭적인 특징을 가진다. 본 논문에서는 이러한 대칭성을 뇌영상내에 종양영역의 존재 유무를 판별할 수 있는 기준으로 이용한다. 대칭성 분석을 위해서 뇌영역의 윤곽선 정보를 이용해 중심축을 생성하였으며 이는 사전정보를 이용하지 않고 영상의 자체 정보만을 해석해서 중심축을 추출할 수 있다는 점에서 기존의 영상 정합을 통해 해부학적 위치 정보를 추출하고 이를 이용하여 중심축을 찾는 방법과 구별된다. 자기공명 영상에서 정상뇌의 조직은 크게 3가지 클러스터로 분할되며 각 클러스터가 포함하는 영역은 백질과 회백질영역을 포함하는 뇌 실질영역, 뇌척수액(csf)영역, 두개골, 지방 및 뇌막 영역 등으로 나뉜다. 종양이 포함된 영상은 종양과 부종 및 괴사 영역이 추가적으로 존재하며 이는 클러스터링을 이용한 분할을 통해서 구분될 수 있다. 분할된 종양 영역의 중심점은 다음 슬라이스의 종양 영역의 경계를 검출하기 위한 레벨셋 알고리즘에 적용되어 전체 볼륨의 종양 영역의 경계선을 추출하기 위한 초기 시드로 이용된다. 본 논문에서는 3차원 볼륨의 영상(슬라이스)중에서 종양 영역이 존재하는 슬라이스의 종양 영역을 분할하여 이후의 슬라이스에서는 분할작업을 수행하지 않고 영역의 경계선만 추출한다. 자카드 지수와 처리 시간의 비교 분석을 통해 기존의 방법과 비슷한 성능과 빠른 속도로 종양 영역을 분할할 수 있다는 것을 보인다.