• Title/Summary/Keyword: spatial aliasing

Search Result 31, Processing Time 0.023 seconds

Temporal Filter for Image Data Compression (영상 데이터 압축을 위한 Temporal Filter의 구성)

  • 김종훈;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1645-1654
    • /
    • 1993
  • Unlike a noise removal recursive temporal filter, this paper presents a temporal filter which improves visual quality and data compression efficiency. In general, for the temporal band-limitation, temporal aliasing should be considered. Since most of a video signal has temporally aliased components, it is desirable to consider them. From a signal processing point of view, it is impossible to realize the filtering not afeced by the aliasings. However, in this paper, efficient filtering with de-aliasing characteristics is proposed. Considering the location of a video signal, temporal filtering can be accomplished by the spatial filtering along the motion vector trajectory (Motion Adaptive Spatial Filter). This filtered result dose not include the aliasings. Besides the efficient band-limitation, temporal noise is also reduced. For the evaluation of the MASF, its realization and filtering characteristics will be discussed in ditail.

  • PDF

Application of the Empirical Orthogonal Functions on the GRACE Spherical Harmonic Solutions

  • Eom, Jooyoung;Seo, Ki-Weon
    • Journal of the Korean earth science society
    • /
    • v.39 no.5
    • /
    • pp.473-482
    • /
    • 2018
  • During the period of 2002 to 2017, the Gravity Recovery And Climate Experiment (GRACE) had observed time-varying gravity changes with unprecedented accuracy. The GRACE science data centers provide the monthly gravity solutions after removing the sub-monthly mass fluctuation using geophysical models. However, model misfit makes the solutions to be contaminated by aliasing errors, which exhibits peculiar north-south stripes. Two conventional filters are used to reduce the errors, but signals with similar spatial patterns to the errors are also removed during the filtering procedure. This would be particularly problematic for estimating the ice mass changes in Western Antarctic Ice Sheet (WAIS) and Antarctic Peninsula (AP) due to their similar spatial pattern to the elongated north-south direction. In this study, we introduce an alternative filter to remove aliasing errors using the Empirical Orthogonal Functions (EOF) analysis. EOF can decompose data into different modes, and thus is useful to separate signals from noise. Therefore, the aliasing errors are effectively suppressed through EOF method. In particular, the month-to-month mass changes in WAIS and AP, which have been significantly contaminated by aliasing errors, can be recovered using EOF method.

Direction of Arrival Estimation under Aliasing Conditions (앨리아싱 조건에서의 광대역 음향신호의 방위각 추정)

  • 윤병우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • It is difficult to detect and to track the moving targets like tanks and diesel vehicles due to the variety of terrain and moving of targets. It is possible to be happened the aliasing conditions as the difficulty of antenna deployment in the complex environment like the battle fields. In this paper, we study the problem of detecting and tracking of moving targets which are emitting wideband signals under severe spatial aliasing conditions because of the sparse arrays. We developed a direction of arrival(DOA) estimation algorithm based on subband MUSIC(Multiple Signal Classification) method which produces high-resolution estimation. In this algorithm, the true bearings are invariant regardless of changes of frequency bands while the aliased false bearings vary. As a result, the proposed algorithm overcomes the aliasing effects and improves the localization performance in sparse passive arrays.

  • PDF

Wavelet Based Matching Pursuit Method for Interpolation of Seismic Trace with Spatial Aliasing (공간적인 알리아싱을 포함한 탄성파 트레이스의 내삽을 위한 요소파 기반의 Matching Pursuit 기법)

  • Choi, Jihun;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • Due to mechanical failure or geographical accessibility, the seismic data can be partially missed. In addition, it can be coarsely sampled such as crossline of the marine streamer data. This seismic data that irregular sampled and spatial aliased may cause problems during seismic data processing. Accurate and efficient interpolation method can solve this problem. Futhermore, interpolation can save the acquisition cost and time by reducing the number of shots and receivers. Among various interpolation methods, the Matching Pursuit method can be applied to any sampling type which is regular or irregular. However, in case of using sinusoidal basis function, this method has a limitation in spatial aliasing. Therefore, in this study, we have developed wavelet based Matching Pursuit method that uses wavelet instead of sinusoidal function for the improvement of dealiasing performance. In addition, we have improved interpolation speed by using inner product instead of L-2 norm.

A Study on Reconstruction Performance of Phase-only Holograms with Varying Propagation Distance (전파 거리에 따른 위상 홀로그램 복원성능 분석 및 BL-ASM 개선 방안 연구)

  • Jun Yeong Cha;Hyun Min Ban;Seung Mi Choi;Jin Woong Kim;Hui Yong Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.3-20
    • /
    • 2023
  • A computer-generated hologram (CGH) is a digitally calculated and recorded hologram in which the amplitude and phase information of an image is transmitted in free space. The CGH is in the form of a complex hologram, but it is converted into a phase-only hologram to display through a phase-only spatial light modulator (SLM). In this paper, in the process of including the amplitude information of an object in the phase information, when a technique that includes subsampling such as DPAC is used, we showed experimentally that the bandwidth of the phase-only hologram increases, and as a result, aliasing that was not present in the complex hologram can occur. In addition, it was experimentally shown that it is possible to generate a high-quality phase-only hologram by restricting the spatial frequency range even at a distance where the numerical reconstruction performance is degraded by aliasing.

Speckle Noise Reduction and Image Quality Improvement in U-net-based Phase Holograms in BL-ASM (BL-ASM에서 U-net 기반 위상 홀로그램의 스펙클 노이즈 감소와 이미지 품질 향상)

  • Oh-Seung Nam;Ki-Chul Kwon;Jong-Rae Jeong;Kwon-Yeon Lee;Nam Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.5
    • /
    • pp.192-201
    • /
    • 2023
  • The band-limited angular spectrum method (BL-ASM) causes aliasing errors due to spatial frequency control problems. In this paper, a sampling interval adjustment technique for phase holograms and a technique for reducing speckle noise and improving image quality using a deep-learningbased U-net model are proposed. With the proposed technique, speckle noise is reduced by first calculating the sampling factor and controlling the spatial frequency by adjusting the sampling interval so that aliasing errors can be removed in a wide range of propagation. The next step is to improve the quality of the reconstructed image by learning the phase hologram to which the deep learning model is applied. In the S/W simulation of various sample images, it was confirmed that the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were improved by 5% and 0.14% on average, compared with the existing BL-ASM.

A Study on Matching Pursuit Interpolation with Moveout Correction (시간차 보정을 적용한 Matching Pursuit 내삽 기법 연구)

  • Lee, Jaekang;Byun, Joongmoo;Seol, Soon Jee;Kim, Young
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.103-111
    • /
    • 2018
  • The recent research aim of seismic trace interpolation is to effectively interpolate the data with spatial aliasing. Among various interpolation methods, the Matching Pursuit interpolation, that finds the proper combination of basis functions which can best recover traces, has been developed. However, this method cannot interpolate aliased data. Thus, the multi-component Matching Pursuit interpolation and moveout correction method have been proposed for interpolation of spatially aliased data. It is difficult to apply the multi-component Matching Pursuit interpolation to interpolating the OBC (Ocean Bottom Cable) data which is the multi-component data obtained at the ocean bottom because the isolation of P wave component is required in advance. Thus, in this study, we dealt with an effective single-component matching Pursuit interpolation method in OBC data where P-wave and S-wave are mixed and spatial aliasing is present. To do this, we proposed the Ricker wavelet based single-component Matching Pursuit interpolation workflow with moveoutcorrection and systematically investigated its effectiveness. In this workflow, the spatial aliasing problem is solved by applying constant value moveout correction to the data before the interpolation is performed. After finishing the interpolation, the inverse moveout correction is applied to the interpolated data using the same constant velocity. Through the application of our workflow to the synthetic OBC seismic data, we verified the effectiveness of the proposed workflow. In addition, we showed that the interpolation of field OBC data with severe spatial aliasing was successfully performed using our workflow.

Applying Spitz Trace Interpolation Algorithm for Seismic Data (탄성파 자료를 이용한 Spitz 보간 알고리즘의 적용)

  • Yang Jung Ah;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 2003
  • In land and marine seismic survey, we generally set receivers with equal interval suppose that sampling interval Is too narrow. But the cost of seismic data acquisition and that of data processing are much higher, therefore we should design proper receiver interval. Spatial aliasing can be occurred on seismic data when sampling interval is too coarse. If we Process spatial aliasing data, we can not obtain a good imaging result. Trace interpolation is used to improve the quality of multichannel seismic data processing. In this study, we applied the Spitz algorithm which is widely used in seismic data processing. This algorithm works well regardless of dip information of the complex underground structure. Using prediction filter and original traces with linear event we interpolated in f-x domain. We confirm our algorithm by examining for some synthetic data and marine data. After interpolation, we could find that receiver intervals get more narrow and the number of receiver is increased. We also could see that continuity of traces is more linear than before Applying this interpolation algorithm on seismic data with spatial aliasing, we may obtain a better migration imaging.

A study on decision on scalable coding method for IPTV service over heterogeneous network (혼재망에서 IPTV 서비스를 위한 계층부호화 방식 결정 방법에 대한 연구)

  • Kim, Dae-Yeon;Suh, Doug-Young;Kim, Young-Soo;Kim, Jin-Sang
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.93-101
    • /
    • 2007
  • In heterogeneous networks SVC (Scalabile Video Coding) will be used for IPTV service. This paper analyses how to determine the optimal inter-layer reference scheme according to final level to be displayed in hybrid scalable coding which consists of spatial, quality and temporal layer. It determines where to stop layering quality layer stacks in lower spatial layer according to the relationship between noise induced by loss of high frequency component eliminated by filter in order to get rid of aliasing when spatial layering is processed and noise induced by quantization when quality layering is processed. This paper shows the choice of the level of layering between spatial and quality to get better coding efficiency and then presents what is needed for determining it.

The Forward Prediction of Radiation Sound Field Using Acoustic Holography : Basic Theory and Signal Processing Method (음향 홀로그래피를 이용한 방사 음장의 전방예측 방법에 관한 기본 이론 및 신호처리 방법)

  • 김양한;권휴상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1654-1668
    • /
    • 1992
  • The acoustic field resulted by the radiation of sound from vibrating structure is predicted based on the sound pressure measurements. The sound pressures are measured at discreate point on the measurement plane ; Hologram. Based on these discreate measurements, the sound field away from the acoustic source is constructed based on the discreate form of Kirchhoff-Helmohltz integral equations The velocities, intensities, and pressures of arbitrary plane of interest in space are predicted and visualized The effects on the sound field reconstruction ; finite aperture effect, effect of finite sampling interval in space studied in terms of wraparound error and spatial aliasing. Numerical simulations and experimental verifications are performed to see these effects. To reduce the wraparound error, zero padding technique in space is used and the usefulness of the method is demonstrated by various examples.