• 제목/요약/키워드: spatial ALD

검색결과 3건 처리시간 0.019초

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

원자층증착 기술: 개요 및 응용분야 (Atomic Layer Deposition: Overview and Applications)

  • 신석윤;함기열;전희영;박진규;장우출;전형탁
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.405-422
    • /
    • 2013
  • Atomic layer deposition(ALD) is a promising deposition method and has been studied and used in many different areas, such as displays, semiconductors, batteries, and solar cells. This method, which is based on a self-limiting growth mechanism, facilitates precise control of film thickness at an atomic level and enables deposition on large and three dimensionally complex surfaces. For instance, ALD technology is very useful for 3D and high aspect ratio structures such as dynamic random access memory(DRAM) and other non-volatile memories(NVMs). In addition, a variety of materials can be deposited using ALD, oxides, nitrides, sulfides, metals, and so on. In conventional ALD, the source and reactant are pulsed into the reaction chamber alternately, one at a time, separated by purging or evacuation periods. Thermal ALD and metal organic ALD are also used, but these have their own advantages and disadvantages. Furthermore, plasma-enhanced ALD has come into the spotlight because it has more freedom in processing conditions; it uses highly reactive radicals and ions and for a wider range of material properties than the conventional thermal ALD, which uses $H_2O$ and $O_3$ as an oxygen reactant. However, the throughput is still a challenge for a current time divided ALD system. Therefore, a new concept of ALD, fast ALD or spatial ALD, which separate half-reactions spatially, has been extensively under development. In this paper, we reviewed these various kinds of ALD equipment, possible materials using ALD, and recent ALD research applications mainly focused on materials required in microelectronics.

CMOS Analog Integrate-and-fire Neuron Circuit for Driving Memristor based on RRAM

  • Kwon, Min-Woo;Baek, Myung-Hyun;Park, Jungjin;Kim, Hyungjin;Hwang, Sungmin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.174-179
    • /
    • 2017
  • We designed the CMOS analog integrate and fire (I&F) neuron circuit for driving memristor based on resistive-switching random access memory (RRAM). And we fabricated the RRAM device that have $HfO_2$ switching layer using atomic layer deposition (ALD). The RRAM device has gradual set and reset characteristics. By spice modeling of the synaptic device, we performed circuit simulation of synaptic device and CMOS neuron circuit. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, two inverters for pulse generation, a refractory part, and finally a feedback part for learning of the RRAM. We emulated the spike-timing-dependent-plasticity (STDP) characteristic that is performed automatically by pre-synaptic pulse and feedback signal of the neuron circuit. By STDP characteristics, the synaptic weight, conductance of the RRAM, is changed without additional control circuit.