• Title/Summary/Keyword: sparse approximate inverse

Search Result 8, Processing Time 0.03 seconds

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC POSITIVE DEFINITE MATRICES

  • Salkuyeh, Davod Khojasteh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1131-1141
    • /
    • 2010
  • We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Some numerical experiments are given to show the efficiency of the preconditioner.

A PRECONDITIONER FOR THE NORMAL EQUATIONS

  • Salkuyeh, Davod Khojasteh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.687-696
    • /
    • 2010
  • In this paper, an algorithm for computing the sparse approximate inverse factor of matrix $A^{T}\;A$, where A is an $m\;{\times}\;n$ matrix with $m\;{\geq}\;n$ and rank(A) = n, is proposed. The computation of the inverse factor are done without computing the matrix $A^{T}\;A$. The computed sparse approximate inverse factor is applied as a preconditioner for solving normal equations in conjunction with the CGNR algorithm. Some numerical experiments on test matrices are presented to show the efficiency of the method. A comparison with some available methods is also included.

DATA MINING AND PREDICTION OF SAI TYPE MATRIX PRECONDITIONER

  • Kim, Sang-Bae;Xu, Shuting;Zhang, Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.351-361
    • /
    • 2010
  • The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods are considered the preferred methods. Selecting a suitable preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The prediction of ILU type preconditioners was considered in [27] where support vector machine(SVM), as a data mining technique, is used to classify large sparse linear systems and predict best preconditioners. In this paper, we apply the data mining approach to the sparse approximate inverse(SAI) type preconditioners to find some parameters with which the preconditioned Krylov subspace method on the linear systems shows best performance.

A Scalable Parallel Preconditioner on the CRAY-T3E for Large Nonsymmetric Spares Linear Systems (대형비대칭 이산행렬의 CRAY-T3E에서의 해법을 위한 확장가능한 병렬준비행렬)

  • Ma, Sang-Baek
    • The KIPS Transactions:PartA
    • /
    • v.8A no.3
    • /
    • pp.227-234
    • /
    • 2001
  • In this paper we propose a block-type parallel preconditioner for solving large sparse nonsymmetric linear systems, which we expect to be scalable. It is Multi-Color Block SOR preconditioner, combined with direct sparse matrix solver. For the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with Multi-Color ordering. Since most of the time is spent on the diagonal inversion, which is done on each processor, we expect it to be a good scalable preconditioner. We compared it with four other preconditioners, which are ILU(0)-wavefront ordering, ILU(0)-Multi-Color ordering, SPAI(SParse Approximate Inverse), and SSOR preconditiner. Experiments were conducted for the Finite Difference discretizations of two problems with various meshsizes varying up to $1025{\times}1024$. CRAY-T3E with 128 nodes was used. MPI library was used for interprocess communications, The results show that Multi-Color Block SOR is scalabl and gives the best performances.

  • PDF

A Robust Preconditioner on the CRAY-T3E for Large Nonsymmetric Sparse Linear Systems

  • Ma, Sangback;Cho, Jaeyoung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.1
    • /
    • pp.85-100
    • /
    • 2001
  • In this paper we propose a block-type parallel preconditioner for solving large sparse nonsymmetric linear systems, which we expect to be scalable. It is Multi-Color Block SOR preconditioner, combined with direct sparse matrix solver. For the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with Multi-Color ordering. Since most of the time is spent on the diagonal inversion, which is done on each processor, we expect it to be a good scalable preconditioner. Finally, due to the blocking effect, it will be effective for ill-conditioned problems. We compared it with four other preconditioners, which are ILU(0)-wavefront ordering, ILU(0)-Multi-Color ordering, SPAI(SParse Approximate Inverse), and SSOR preconditioner. Experiments were conducted for the Finite Difference discretizations of two problems with various meshsizes varying up to 1024 x 1024, and for an ill-conditioned matrix from the shell problem from the Harwell-Boeing collection. CRAY-T3E with 128 nodes was used. MPI library was used for interprocess communications. The results show that Multi-Color Block SOR and ILU(0) with Multi-Color ordering give the best performances for the finite difference matrices and for the shell problem only the Multi-Color Block SOR converges.

  • PDF

High Resolution ISAR Imaging Based on Improved Smoothed L0 Norm Recovery Algorithm

  • Feng, Junjie;Zhang, Gong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5103-5115
    • /
    • 2015
  • In radar imaging, a target is usually consisted of a few strong scatterers which are sparsely distributed. In this paper, an improved sparse signal recovery algorithm based on smoothed l0 (SL0) norm method is proposed to achieve high resolution ISAR imaging with limited pulse numbers. Firstly, one new smoothed function is proposed to approximate the l0 norm to measure the sparsity. Then a single loop step is used instead of two loop layers in SL0 method which increases the searching density of variable parameter to ensure the recovery accuracy without increasing computation amount, the cost function is undated in every loop for the next loop until the termination is satisfied. Finally, the new set of solution is projected into the feasible set. Simulation results show that the proposed algorithm is superior to the several popular methods both in terms of the reconstruction performance and computation time. Real data ISAR imaging obtained by the proposed algorithm is competitive to several other methods.

Analysis of Signal Recovery for Compressed Sensing using Deep Learning Technique (딥러닝 기술을 활용한 압축센싱 신호 복원방법 분석)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.257-267
    • /
    • 2017
  • Compressed Sensing(CS) deals with linear inverse problems. The theoretical results of CS have had an impact on inference problems and presented amazing research achievements in the related fields including signal processing and information theory. However, in order for CS to be applied in practical environments, there are two significant challenges to be solved. One is to guarantee in real time recovery of CS signals, and the other is that the signals have to be sparse. To this end, the latest researches using deep learning technology have emerged. In this paper, we consider CS problems based on deep learning and discuss the latest research results. And the approaches for CS signal reconstruction using deep learning show superior results in terms of recovery time and performance. It is expected that the approaches for CS reconstruction using deep learning shown in recent studies can not only raise the possibility of utilization of CS, but also be highly exploited in the fields of signal processing and communication areas.

Quality Characteristics of White Pan Bread Added with Poria cocos Powder (복령 분말을 첨가한 식빵의 품질 특성)

  • Shin, Gil-Man
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.4
    • /
    • pp.554-562
    • /
    • 2008
  • In this study, we attempted to assess the efficacy of a method to improve the quality of prepared bread via the addition Poria cocos powder to wheat flour at a range of concentrations from $0{\sim}5%$. The approximate composition for Poria cocos powder was as follow: moisture 7.67%, crude protein 0.61%, crude fat 0.58%, crude ash 0.32%, and crude fiber 0.30%, when using the flour to which the Poria cocos powder had been added, specific volume, falling number, and dough yield values all increased with increasing concentrations of added Poria cocos powder. The result of our microscopic observations revealed a relative scarcity of larger starch granules, and the bread prepared with the Poria cocos powder evidenced a sparse structure. With regard to the Hunters color value measurements, the L value decreased with increasing concentrations of Poria cocos powder. but the a and b values evidenced an inverse relationship with the concentration of added powder. The texture, hardness, and adhesiveness characteristics of the bread decreased with increasing concentration of added Poria cocos powder. but the gumminess and chewiness of the bread increased. However, we noted no significant differences in the springiness and cohesiveness characteristics among the experimental groups assessed herein. In the sensory evaluation, the quality of the 2% or 3% Poria cocos powder breads was optimal in terms of its taste and flavor.

  • PDF