• Title/Summary/Keyword: span number

Search Result 550, Processing Time 0.026 seconds

Entropy-based optimal sensor networks for structural health monitoring of a cable-stayed bridge

  • Azarbayejani, M.;El-Osery, A.I.;Taha, M.M. Reda
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.369-379
    • /
    • 2009
  • The sudden collapse of Interstate 35 Bridge in Minneapolis gave a wake-up call to US municipalities to re-evaluate aging bridges. In this situation, structural health monitoring (SHM) technology can provide the essential help needed for monitoring and maintaining the nation's infrastructure. Monitoring long span bridges such as cable-stayed bridges effectively requires the use of a large number of sensors. In this article, we introduce a probabilistic approach to identify optimal locations of sensors to enhance damage detection. Probability distribution functions are established using an artificial neural network trained using a priori knowledge of damage locations. The optimal number of sensors is identified using multi-objective optimization that simultaneously considers information entropy and sensor cost-objective functions. Luling Bridge, a cable-stayed bridge over the Mississippi River, is selected as a case study to demonstrate the efficiency of the proposed approach.

Shear Strength of RC Beams Strengthened with GFRP Sheets with Different Details (유리섬유쉬트로 전단보강된 RC보의 전단강도에 대한 보강매수 및 형태의 영향)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.251-254
    • /
    • 2005
  • A number of studies have been conducted on FRP shear strengthening of RC beams during the past decade. The test results indicated. that the strengthened specimens failed predominantly by debonding of the FRP sheets before reaching the rupture strength of FRP sheets. For this reason, limits on the effective strain in FRP have been incorporated in ACI 440.2R recommendation considering debonding failure. This paper presents the test results of 7 small scale RC beams shear-strengthened with glass fiber sheets. Three types of FRP configurations, such as two sides bonded, U wrap and fiber shear-key embedded, were considered. GFRP sheet were bonded vertically to member axis along the shear span. From the test results, it was found that debonding strain of GFRP sheets at failure decreased with the number of layers. In addition, effective strain of FRP proposed by ACI 440.2R recommendation has been verified in this study.

  • PDF

A Heuristic Approach for Establishing On-line Real-time Exam Timetables in Cyber Universities (중복시험을 배제할 수 있는 사이버대학의 온라인 실시간 시험 시간표 작성 방안)

  • Park, Chan-Kwon;Kim, Hyoung-Do;Yum, Ji-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.3
    • /
    • pp.227-236
    • /
    • 2007
  • Students in cyber universities can take every course because there are no physical constraints such as class rooms. On the other hand. cyber universities should take a heavy burden to schedule real-time exams in a designated time period. Any two courses a student takes must not be simultaneously allocated to a time slot in such a schedule. It is well known that the complexity of this kind of scheduling problem increases exponentially as the number of courses does. This research provides a heuristic method to make on-line real-time exam timetables with minimal exam time span. It considers the constraint of not allocating courses a student takes to simultaneous exam time and prioritizes courses by the number of students.

  • PDF

Steel-CFRP composite and their shear response as vertical stirrup in beams

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1145-1160
    • /
    • 2015
  • An experimental study was conducted for the effectiveness of steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups in concrete beam to carry shearing force and comparison was made with conventional steel bar stirrups. A total numbers of 8 concrete beams were tested under four point loads. Each beam measured 1,600 mm long, 160 mm width and 240 mm depth. The beams were composed of same grade of concrete, with same amount of flexural steel but different shear reinforcements. The main variables include, type of stirrups (shape of stirrups and number of CFRP layers used in each stirrup) and number of stirrups used in shear spans. After getting on an excellent closeness between the values of ultimate shear resistance and ultimate tensile load of steel-CFRP stirrups, it could be concluded that the steel-CFRP stirrups represent the effective solution of premature failure of FRP stirrups at the bends.

Experimental and numerical study on energy absorption of lattice-core sandwich beam

  • Taghipoor, Hossein;Noori, Mohammad Damghani
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.135-147
    • /
    • 2018
  • Quasi-static three-point bending tests on sandwich beams with expanded metal sheets as core were conducted. Relationships between the force and displacement at the mid-span of the sandwich beams were obtained from the experiments. Numerical simulations were carried out using ABAQUS/EXPLCIT and the results were thoroughly compared with the experimental results. A parametric analysis was performed using a Box-Behnken design (BBD) for the design of experiments (DOE) techniques and a finite element modeling. Then, the influence of the core layers number, size of the cell and, thickness of the substrates was investigated. The results showed that the increase in the size of the expanded metal cell in a reasonable range was required to improve the performance of the structure under bending collapse. It was found that core layers number and size of the cell was key factors governing the quasi-static response of the sandwich beams with lattice cores.

Behavior of reinforced concrete segmental hollow core slabs under monotonic and repeated loadings

  • Najm, Ibrahim N.;Daud, Raid A.;Al-Azzawi, Adel A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.269-289
    • /
    • 2019
  • This study investigated experimentally the response of thick reinforced concrete specimens having hollow cores with critical parameters. The investigation includes testing of twelve specimens that are solid and hollow-core slab models. Each specimen consists of two pieces, the piece dimensions are (1.2 m) length, (0.3 m) width and (20 cm) thickness tested under both monotonic and repeated loading. The test program is carried out to study the effects of load type, core diameters, core shape, number of cores, and steel fiber existence. Load versus deflection at mid span, failure modes, and crack patterns were obtained during the test. The test results showed that core shape and core number has remarkable influenced on cracking pattern, ultimate load, and failure mode. Also, when considering repeated loading protocol, the ultimate load capacity, load at yielding, and ductility is reduced.

Life History and Population Dynamics of Korean Woodroach(Cryptocercus kyebangensis) Populations

  • Park, Yung-Chul;Choe, Jae-Chun
    • Animal cells and systems
    • /
    • v.7 no.2
    • /
    • pp.111-117
    • /
    • 2003
  • Ecological aspects of Cryptocercus kyebangensis life history were investigated via laboratory rearing and field observations. The number of antennal segments and head width were used to classify the first four instars. The results, which combine both the field collection and the laboratory rearing, indicate that eleven instars occur in C. kyebangensis. It supports the proposal on the number of instars of Park and Choe (2003c) based on field collections. A total of 388 nymps from 13 colonies were collected prior to winter to investigate overwintering stages. Of them,4% (n = 17) were the second instars, 57% (n = 220) were the third instars, and 39% (n = 151) were the fourth instars, respectively. Thus, most of them overwinter in the third or fourth instars. The results indicate that young nymphs of C. kyebangensis have to reach at least 3rd or 4th instar to survive low temperature environment of winter. According to seasonal dynamics of populations, C. kyebangensis reaches adulthood in the summer of the fourth or fifth year (4-5 yr span) after their birth.

Structural behavior of non-symmetrical steel cable-stayed bridges

  • Jorquera-Lucerga, Juan J.;Lozano-Galant, Jose A.;Turmo, Jose
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.447-468
    • /
    • 2016
  • Despite of the growing number of built examples, the analysis of non-symmetrical cable-stayed bridges has not received considerable attention from the researchers. In fact, the effects of the main design parameters in the structural behavior of these bridges are not addressed in detail in the literature. To fill this gap, this paper studies the structural response of a number of non-symmetrical cable-stayed bridges. With this aim, a parametric analysis is performed to evaluate the effect of each of the main design parameters (the ratio between the main and the back span length, the pylon, the deck and backstay stiffnesses, the pylon inclination, and the stay configuration) of this kind of bridges. Furthermore, the role of the geometrical nonlinearity and the steel consumption in stays are evaluated.

Behavior Properties of Bridge by Non Destructive and Loading Test (비파괴 및 재하시험에 의한 노후 교량의 거동특성)

  • Min, Jeong-Ki;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.

Seismic Fragility Analysis of Track-on Steel-Plate-Girder Railway Bridges Considering the Span Variability and System Damage (경간 구성 및 시스템 손상을 고려한 강판형 철도교의 지진 취약도 해석)

  • Park, Joo-Nam;Kim, Lee-Hyeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Seismic risk assessment of railway bridges is an important issue for a transportation network, because loss of functionality of railway bridges could result in severe disruption of the railway line, as no redundant routing systems generally exist. Although many studies have been conducted by numerous researchers regarding fragility analyses of bridge structure, little or no studies have been done for fragility analyses of a class of bridge structures considering their geometric variability. This study performs a fragility analysis for Track-on Steel-Plate-Girder (TOSPG) railway bridges in Korea considering their span variability. Seismic fragility curves are developed for a series of bridges with different spans varying from 2 to 15. At last, the fragility curves for the whole TOSPG bridges in Korea are also developed using the total probability theorem. This study is expected to effectively contribute to the seismic risk assessment of railway lines, where a number of bridges are present.