• Title/Summary/Keyword: spam recall

Search Result 8, Processing Time 0.018 seconds

Analyzing the correlation of Spam Recall and Thesaurus

  • Kang, Sin-Jae;Kim, Jong-Wan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.21-25
    • /
    • 2005
  • In this paper, we constructed a two-phase spam-mail filtering system based on the lexical and conceptual information. There are two kinds of information that can distinguish the spam mail from the legitimate mail. The definite information is the mail sender's information, URL, a certain spam list, and the less definite information is the word list and concept codes extracted from the mail body. We first classified the spam mail by using the definite information, and then used the less definite information. We used the lexical information and concept codes contained in the email body for SVM learning in the $2^{nd}$ phase. According to our results the spam precision was increased if more lexical information was used as features, and the spam recall was increased when the concept codes were included in features as well.

  • PDF

Improving the Quality of Web Spam Filtering by Using Seed Refinement (시드 정제 기술을 이용한 웹 스팸 필터링의 품질 향상)

  • Qureshi, Muhammad Atif;Yun, Tae-Seob;Lee, Jeong-Hoon;Whang, Kyu-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.123-139
    • /
    • 2011
  • Web spam has a significant influence on the ranking quality of web search results because it promotes unimportant web pages. Therefore, web search engines need to filter web spam. web spam filtering is a concept that identifies spam pages - web pages contributing to web spam. TrustRank, Anti-TrustRank, Spam Mass, and Link Farm Spam are well-known web spam filtering algorithms in the research literature. The output of these algorithms depends upon the input seed. Thus, refinement in the input seed may lead to improvement in the quality of web spam filtering. In this paper, we propose seed refinement techniques for the four well-known spam filtering algorithms. Then, we modify algorithms, which we call modified spam filtering algorithms, by applying these techniques to the original ones. In addition, we propose a strategy to achieve better quality for web spam filtering. In this strategy, we consider the possibility that the modified algorithms may support one another if placed in appropriate succession. In the experiments we show the effect of seed refinement. For this goal, we first show that our modified algorithms outperform the respective original algorithms in terms of the quality of web spam filtering. Then, we show that the best succession significantly outperforms the best known original and the best modified algorithms by up to 1.38 times within typical value ranges of parameters in terms of recall while preserving precision.

Comparing Feature Selection Methods in Spam Mail Filtering

  • Kim, Jong-Wan;Kang, Sin-Jae
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.17-20
    • /
    • 2005
  • In this work, we compared several feature selection methods in the field of spam mail filtering. The proposed fuzzy inference method outperforms information gain and chi squared test methods as a feature selection method in terms of error rate. In the case of junk mails, since the mail body has little text information, it provides insufficient hints to distinguish spam mails from legitimate ones. To address this problem, we follow hyperlinks contained in the email body, fetch contents of a remote web page, and extract hints from both original email body and fetched web pages. A two-phase approach is applied to filter spam mails in which definite hint is used first, and then less definite textual information is used. In our experiment, the proposed two-phase method achieved an improvement of recall by 32.4% on the average over the $1^{st}$ phase or the $2^{nd}$ phase only works.

  • PDF

Spam-mail Filtering based on Lexical Information and Thesaurus (어휘정보와 시소러스에 기반한 스팸메일 필터링)

  • Kang Shin-Jae;Kim Jong-Wan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • In this paper, we constructed a spam-mail filtering system based on the lexical and conceptual information. There are two kinds of information that can distinguish the spam mail from the legitimate mil. The definite information is the mail sender's information, URL, a certain spam keyword list, and the less definite information is the word lists and concept codes extracted from the mail body. We first classified the spam mail by using the definite information, and then used the less definite information. We used the lexical information and concept codes contained in the email body for SVM learning. According to our results the spam precision was increased if more lexical information was used as features, and the spam recall was increased when the concept codes were included in features as well.

  • PDF

Comparing Korean Spam Document Classification Using Document Classification Algorithms (문서 분류 알고리즘을 이용한 한국어 스팸 문서 분류 성능 비교)

  • Song, Chull-Hwan;Yoo, Seong-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.222-225
    • /
    • 2006
  • 한국은 다른 나라에 비해 많은 인터넷 사용자를 가지고 있다. 이에 비례해서 한국의 인터넷 유저들은 Spam Mail에 대해 많은 불편함을 호소하고 있다. 이러한 문제를 해결하기 위해 본 논문은 다양한 Feature Weighting, Feature Selection 그리고 문서 분류 알고리즘들을 이용한 한국어 스팸 문서 Filtering연구에 대해 기술한다. 그리고 한국어 문서(Spam/Non-Spam 문서)로부터 영사를 추출하고 이를 각 분류 알고리즘의 Input Feature로써 이용한다. 그리고 우리는 Feature weighting 에 대해 기존의 전통적인 방법이 아니라 각 Feature에 대해 Variance 값을 구하고 Global Feature를 선택하기 위해 Max Value Selection 방법에 적용 후에 전통적인 Feature Selection 방법인 MI, IG, CHI 들을 적용하여 Feature들을 추출한다. 이렇게 추출된 Feature들을 Naive Bayes, Support Vector Machine과 같은 분류 알고리즘에 적용한다. Vector Space Model의 경우에는 전통적인 방법 그대로 사용한다. 그 결과 우리는 Support Vector Machine Classifier, TF-IDF Variance Weighting(Combined Max Value Selection), CHI Feature Selection 방법을 사용할 경우 Recall(99.4%), Precision(97.4%), F-Measure(98.39%)의 성능을 보였다.

  • PDF

Modeling and Evaluating Information Diffusion for Spam Detection in Micro-blogging Networks

  • Chen, Kan;Zhu, Peidong;Chen, Liang;Xiong, Yueshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3005-3027
    • /
    • 2015
  • Spam has become one of the top threats of micro-blogging networks as the representations of rumor spreading, advertisement abusing and malware distribution. With the increasing popularity of micro-blogging, the problems will exacerbate. Prior detection tools are either designed for specific types of spams or not robust enough. Spammers may escape easily from being detected by adjusting their behaviors. In this paper, we present a novel model to quantitatively evaluate information diffusion in micro-blogging networks. Under this model, we found that spam posts differ wildly from the non-spam ones. First, the propagations of non-spam posts mostly result from their followers, but those of spam posts are mainly from strangers. Second, the non-spam posts relatively last longer than the spam posts. Besides, the non-spam posts always get their first reposts/comments much sooner than the spam posts. With the features defined in our model, we propose an RBF-based approach to detect spams. Different from the previous works, in which the features are extracted from individual profiles or contents, the diffusion features are not determined by any single user but the crowd. Thus, our method is more robust because any single user's behavior changes will not affect the effectiveness. Besides, although the spams vary in types and forms, they're propagated in the same way, so our method is effective for all types of spams. With the real data crawled from the leading micro-blogging services of China, we are able to evaluate the effectiveness of our model. The experiment results show that our model can achieve high accuracy both in precision and recall.

An Improved Bayesian Spam Mail Filter based on Ch-square Statistics (카이제곱 통계량을 이용한 개선된 베이지안 스팸메일 필터)

  • Kim Jin-Sang;Choe Sang-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.403-414
    • /
    • 2005
  • Most of the currently used spam-filters are based on a Bayesian classification technique, where some serious problems occur such as a limited precision/recall rate and the false positive error. This paper addresses a solution to the problems using a modified Bayesian classifier based on chi-square statistics. The resulting spam-filter is more accurate and flexible than traditional Bayesian spam-filters and can be a personalized one providing some parameters when the filter is teamed from training data.

  • PDF

Spam-Mail Filtering System Using Weighted Bayesian Classifier (가중치가 부여된 베이지안 분류자를 이용한 스팸 메일 필터링 시스템)

  • 김현준;정재은;조근식
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1092-1100
    • /
    • 2004
  • An E-mails have regarded as one of the most popular methods for exchanging information because of easy usage and low cost. Meanwhile, exponentially growing unwanted mails in user's mailbox have been raised as main problem. Recognizing this issue, Korean government established a law in order to prevent e-mail abuse. In this paper we suggest hybrid spam mail filtering system using weighted Bayesian classifier which is extended from naive Bayesian classifier by adding the concept of preprocessing and intelligent agents. This system can classify spam mails automatically by using training data without manual definition of message rules. Particularly, we improved filtering efficiency by imposing weight on some character by feature extraction from spam mails. Finally, we show efficiency comparison among four cases - naive Bayesian, weighting on e-mail header, weighting on HTML tags, weighting on hyperlinks and combining all of four cases. As compared with naive Bayesian classifier, the proposed system obtained 5.7% decreased precision, while the recall and F-measure of this system increased by 33.3% and 31.2%, respectively.