• Title/Summary/Keyword: space-time block coding

Search Result 115, Processing Time 0.027 seconds

Multi-Parameter Based Scheduling for Multi-user MIMO Systems

  • Chanthirasekaran, K.;Bhagyaveni, M.A.;Parvathy, L. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2406-2412
    • /
    • 2015
  • Multi-user multi-input multi-output (MU-MIMO) system has attracted the 4th generation wireless network as one of core technique for performance enrichment. In this system rate control is a challenging problem and another problem is optimization. Proper scheduling can resolve these problems by deciding which set of user and at which rate the users send their data. This paper proposes a new multi-parameter based scheduling (MPS) for downlink multi-user multiple-input multiple-output (MU-MIMO) system under space-time block coding (STBC) transmissions. Goal of this MPS scheme is to offer improved link level performance in terms of a low average bit error rate (BER), high packet delivery ratio (PDR) with improved resource utilization and service fairness among the user. This scheme allows the set of users to send data based on their channel quality and their demand rates. Simulation compares the MPS performance with other scheduling scheme such as fair scheduling (FS), normalized priority scheduling (NPS) and threshold based fair scheduling (TFS). The results obtained prove that MPS has significant improvement in average BER performance with improved resource utilization and fairness as compared to the other scheduling scheme.

The Interference Nulling using Weighted Precoding in the MIMO Cognitive Radio System (다중 안테나를 사용하는 인지무선 시스템에서 가중치 precoder를 통한 간섭 제거 기법)

  • Lee, Seon-yeong;Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.768-776
    • /
    • 2010
  • In this paper, we consider a linear precoding for the effective spectrum sharing in multiple-input multiple-output (MIMO) cognitive radio system where a secondary user coexists with primary users. The secondary user employs the orthogonal space time block coding (OSTBC) at the transmitter. Assuming a flat fading channel and a maximum-likelihood receiver, the optimum precoder forces transmission referred to as eigen-beamforming. In this paper, to eliminate the interference, ZF criterion based eigen-beamforming is not only used but also the precoding weight is chosen to cancel the remaining interference. This weight is computed by vector's likelihood. Simulation results show stronger interference suppression capability, better SER performance, and higher capacity than the algorithm in [4].

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

Performance Analysis of Dual-Hop Cooperative Transmission with Best Relay Selection in a Rayleigh Fading Channel

  • Nessa, Ahasanun;Lee, Woo-Yong;Kim, Yong-Sun;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.530-539
    • /
    • 2009
  • Wireless Relaying is a promising solutions to overcome the channel impairments and provides high data rate coverage that appear for beyond 3G mobile communications. In this paper we present end to end BER performance of dual hop wireless communication systems equipped with multiple Decode and Forward relays over Rayleigh fading channel with the best relay selection. We compare the BER performance of the best relay with the BER performance of single relay. We select the best relay based on the end to end channel conditions. We further calculate the outage probability of the best relay. It is shown that the outage probability of the best relay is equivalent to the outage probability when all relays take part in the transmission. We apply Orthogonal Space Time Block coding(OSTBC) at the source terminal. Numerical and simulation results are presented to verify our analysis.

A Study on MIMO-ARQ Scheme Using D-MSSTC (D-MSSTC를 이용한 MIMO-ARQ에 관한 연구)

  • Jeon, Chanyong;Lee, Jeong Woo
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.70-72
    • /
    • 2017
  • We proposed a multi-input multi-output automatic repeat request (MIMO-ARQ) scheme using double multi-strata space-time code (D-MSSTC) for high spectral efficiency in $4{\times}N_r$ MIMO systems. To improve error performance of the proposed scheme, we allocate power and phase to each layer of MSSTC over every transmission. Additionally, we suboptimally optimize power allocation to maximize the minimum coding gain distance of D-MSSTC and phase allocation to efficiently minimize inter-layer interference in MSSTC. In simulation results, it is observed that the proposed MIMO-ARQ scheme based on D-MSSTC shows better block error rate (BLER) performance than conventional schemes.

Outage Probability Analysis of Multiuser MISO Systems Exploiting Joint Spatial Diversity and Multiuser Diversity with Outdated Feedback

  • Diao, Chunjuan;Xu, Wei;Chen, Ming;Wu, Bingyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1573-1595
    • /
    • 2011
  • In this paper, the outage performance of multiuser multiple-input single-output (MISO) systems exploiting joint spatial and multiuser diversities is investigated for Rayleigh fading channels with outdated feedback. First, we derive closed-form exact outage probabilities for the joint diversity schemes that combine user scheduling with different spatial diversity techniques, including: 1) transmit maximum-ratio combining (TMRC); 2) transmit antenna selection (TAS); and 3) orthogonal space-time block coding (OSTBC). Then the asymptotic outage probabilities are analyzed to gain more insights into the effect of feedback delay. It is observed that with outdated feedback, the asymptotic diversity order of the multiuser OSTBC (M-OSTBC) scheme is equal to the number of transmit antennas at the base station, while that of the multiuser TMRC (M-TMRC) and the multiuser TAS (M-TAS) schemes reduce to one. Further by comparing the asymptotic outage probabilities, it is found that the M-TMRC scheme outperforms the M-TAS scheme, and the M-OSTBC scheme can perform best in the outage regime of practical interest when the feedback delay is large. Theoretical analysis is verified by simulation results.

Harmonic-Mean-Based Dual-Antenna Selection with Distributed Concatenated Alamouti Codes in Two-Way Relaying Networks

  • Li, Guo;Gong, Feng-Kui;Chen, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1961-1974
    • /
    • 2019
  • In this letter, a harmonic-mean-based dual-antenna selection scheme at relay node is proposed in two-way relaying networks (TWRNs). With well-designed distributed orthogonal concatenated Alamouti space-time block code (STBC), a dual-antenna selection problem based on the instantaneous achievable sum-rate criterion is formulated. We propose a low-complexity selection algorithm based on the harmonic-mean criterion with linearly complexity $O(N_R)$ rather than the directly exhaustive search with complexity $O(N^2_R)$. From the analysis of network outage performance, we show that the asymptotic diversity gain function of the proposed scheme achieves as $1/{\rho}{^{N_R-1}}$, which demonstrates one degree loss of diversity order compared with the full diversity. This slight performance gap is mainly caused by sacrificing some dual-antenna selection freedom to reduce the algorithm complexity. In addition, our proposed scheme can obtain an extra coding gain because of the combination of the well-designed orthogonal concatenated Alamouti STBC and the corresponding dual-antenna selection algorithm. Compared with the common-used selection algorithms in the state of the art, the proposed scheme can achieve the best performance, which is validated by numerical simulations.

1-2-1 Coded Cooperative Communication Using STBC and ARQ (STBC와 ARQ를 이용한 1-2-1 부호화 협력 통신)

  • Hong, Seong-Wook;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.421-427
    • /
    • 2009
  • This paper has proposed 1-2-1 coded cooperative communication that is a combination of STBC and ARQ. Coded cooperative communication is a protocol that integrates channel coding with cooperative communication. In this paper consider convolution encoder. ARQ method can increase the spectral efficiency than conventional cooperative communication because if the received signal from source node is satisfied by the destination preferentially, the destination transmits ACK message to both relay node and source node and then recovers the received signal. Where each relay 1, 2 forwards a punctured portion of receive data. When relay transmit to destination apply STBC the reliability to increase. Moreover this protocol can get better BER performance of receiver using simple comparator. We verified BER performance for the proposed protocol through Monte-Carlo simulation over Rayleigh fading plus AWGN.

Effective Compression of the Surveillance Video with Region of Interest (관심영역 구분을 통한 감시영상시스템의 효율적 압축)

  • Ko, Mi-Ae;Kim, Young-Mo;Koh, Kwang-Sik
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.95-102
    • /
    • 2003
  • In surveillance video system, there are many classes of images and some spatial regions are more important than other regions. The conventional compression method in this system have been compressed there full frames without classfying them depend on their important parts. To improve the accuracy of the image coding and deliver effective compression for the surveillance video system, it was necessary to separate the regions according to their importance. In this paper, we propose a new effective surveillance video image compression method. The proposed scheme defines importance based three-level region of interest block in a frame, such as background, motion object block, and the feature object block. A captured video image frame can be separated to these three different levels of block regions. And depends on the priority, each block can be modified and compressed in different resolution, compression ratio and qualify factor. Therefore, in surveillance video system, this algorithm not only reduces the image processing time and space, but also guarantees the Important image data in high quality to acquire the system's goal.

System Level Performance Evaluation and Throughput Enhancement Algorithm of MBS (MBS의 전송률 증대 알고리즘 및 시스템 레벨 성능평가)

  • Seo, Seong-Young;Park, Dong-Chan;Kim, Suk-Chan;Kim, Young-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.345-351
    • /
    • 2010
  • It has been growing interests that convergence services of broadcasting and telecommunication services such as DMB 2.0 and Mobile IPTV etc. Unicast type is difficult to service broadcasting due to limits of capacity and poor receiving environments, WiBro supports broadcast service with MBS. MBS is transmission method that base stations belong to same the MBS zone transmit the all users who request broadcasting service. Terminals are received resources from all base station in the MBS zone and SINR can be improved because of macro diversity. If terminals are located at edge of the MBS zone, complement algorithm are needed beacause received SINR is very low. In this paper, MIMO STBC, Relay and FFR are introduced to improve the throughputs using high MCS. The basic simulation environment is assumed to be SISO. Transparent relay and FFR applicable on MBS are divided by SISO and MIMO STBC environment and evaluate the performance.