• Title/Summary/Keyword: space-time block code (STBC)

Search Result 83, Processing Time 0.025 seconds

Closed Loop Quasi- Orthogonal ST8C with Antenna Selective Feedback (안테나 선택적 Feedback을 갖는 폐루프 준직교 STBC)

  • 김민수;김용석;황금찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.511-513
    • /
    • 2004
  • IMT-2000 시스템에서 직교 STBC (Space-Time Block Code)와 같은 송신 다이버시티(diversity) 기법은 순방향 링크용량을 향상시킬 수 있다. 그러나 완벽한 다이버시티 (full diversity) 이득과 코드율 1 (full code rate)을 갖는 직교 STBC는 송신안테나 개수가 2개일 경우만 존재한다. 이 논문에서는 4개의 송신안테나와 1개의 수신안테나를 갖는 시스템에서 코드율 1 을 갖는 준직교 STBC를 사용할 경우 안테나 선택적 feedback 정보를 이용하여 완벽한 다이버시티 이득을 얻는 동시에 feedback 정보량은 줄일 수 있음을 보여 준다.

  • PDF

Performance Analysis and Design of MIMO Systems for Terrestrial Transmission of UHDTV (UHDTV를 위한 MIMO 전송 시스템 성능 분석 및 설계)

  • Jo, Bong-Gyun;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.547-554
    • /
    • 2010
  • In this paper, we propose transmission systems for ultra high definition television (UHDTV) through terrestrial transmission by applying the multi-input multi-output (MIMO) technology. The space time block code, hybrid STBC, V-BLAST and linear dis- persion code are considered to support a high data rate of the UHDTV system. The performance of proposed MIMO systems are evaluated through computer simulations. Then we suggest MIMO parameters, number of antennas and optimal transmission scheme to achieve the transmission rate of the UHDTV system.

Quasi-Orthogonal Space-Time Block Codes Designs Based on Jacket Transform

  • Song, Wei;Lee, Moon-Ho;Matalgah, Mustafa M.;Guo, Ying
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.240-245
    • /
    • 2010
  • Jacket matrices, motivated by the complex Hadamard matrix, have played important roles in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a novel approach to design a simple class of space-time block codes (STBCs) to reduce its peak-to-average power ratio. The proposed code provides coding gain due to the characteristics of the complex Hadamard matrix, which is a special case of Jacket matrices. Also, it can achieve full rate and full diversity with the simple decoding. Simulations show the good performance of the proposed codes in terms of symbol error rate. For generality, a kind of quasi-orthogonal STBC may be similarly designed with the improved performance.

Performance of MIMO-OFDM Systems for Underwater Communications (수중 통신 환경에서의 MIMO-OFDM 시스템 성능 분석)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hoon;Kim, Sea-Moon;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.597-599
    • /
    • 2010
  • In this paper, by considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

  • PDF

Design Philosophy of MIMO OFDM system for Underwater Communication (수중 통신 환경을 위한 MIMO-OFDM 시스템 설계)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hun;Kim, Sea-Moon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2011
  • In this paper, we first analyze the differences of underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) systems and conventional terrestrial OFDM system, and give a simple introduction of the backgrounds. By considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

Block-Ordered Layered Detector for MIMO-STBC Combined with Transmit and Receive Eigen-Beamformers (MIMO-STBC를 위한 송수신 고유빔 형성기를 이용한 블록순 계층적 검파기)

  • 이원철;김홍철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.17-26
    • /
    • 2004
  • This paper proposes JBSTBC (Joint Beamforming Space-Time Block Coding) scheme for MIMO (Multi-Input Multi-Output) communication systems. To enhance the order of spatial diversity in presence of deteriorative fading correlations as well as inter-substream interferences, the proposed JBSTBC method employs joint eigen-beamforming technique together with the BOLD (block-ordered layered detector) for MIMO-STBC. In order to confirm superiority of the proposed JBSTBC method, the computer simulations are conducted in highly correlated fading situations with providing detailed mathematical derivations for clarifying functionality of the proposed scheme.

Transmit Eigen-Beamformer with Space-Time Block Code for MISO Wireless Communication Systems

  • Kim, Hong-Cheol;Park, jae-Hyung;Yoan Shin;Lee, Won-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1932-1935
    • /
    • 2002
  • This paper introduces the downlink Eigen-beamformer with Space-Time Block Code (STBC) 〔1,2〕employed on the MISO (Multiple Input Multiple Output) systems. The proposed scheme is acquired both transmit diversity gain from STBC and beamforming gain from Eigen-beamformer. In general, it is well described that the diversity gain be maximized when channel parameters associated to fingers are mutually independent. Major role f utilizing Eigen-beamformer is to enforce channel parameters being uncorrelated. According to this, the proposed STBC combined with Eigen-beamformer on the downlink significantly improves its performance under the spatially correlated channel. Simulation results are accomplished under three distinct channel conditioned with varying the degree of their correlations. The result indicates hat our proposed scheme is good performance in spatially correlated channel.

  • PDF

Decision-Feedback Detector for Quasi-Orthogonal Space-Time Block Code over Time-Selective Channel (시간 선택 채널에서의 QO-STBC를 위한 피드백 결정 검출기)

  • Wang, Youxiang;Park, Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.933-940
    • /
    • 2009
  • This paper proposes a robust detection scheme for quasi-orthogonal space-time block code over time-selective fading channels. The proposed detector performs interference cancellation and decision feedback equalization to remove the inter-antenna interference and inter-symbol interference when the channel varies from symbol to symbol. Cholesky factorization is used on the channel Gram matrix after performing interference cancellation to obtain feed forward equalizer and feedback equalizer. It is shown by simulations that the proposed detection scheme outperforms the conventional detection schemes and the exiting detection schemes to time-selectivity.

Performance Analysis of STBC System Combined with Convolution Code fot Improvement of Transmission Reliability (전송신뢰성의 향상을 위해 STBC에 컨볼루션 코드를 연계한 시스템의 성능분석)

  • Shin, Hyun-Jun;Kang, Chul-Gyu;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1068-1074
    • /
    • 2011
  • In this paper, the proposed scheme is STBC(space-time block codes) system combined with convolution code which is the most popular channel coding to ensure the reliability of data transmission for a high data rate wireless communication. The STBC is one of MIMO(multi-input multi-output) techniques. In addition, this scheme uses a modified viterbi algorithm in order to get a high system gain when data is transmitted. Because we combine STBC and convolution code, the proposed scheme has a little high quantity of computation but it can get a maximal diversity gain of STBC and a high coding gain of convolution code at the same time. Unlike existing viterbi docoding algorithm using Hamming distance in order to calculate branch matrix, the modified viterbi algorithm uses Euclidean distance value between received symbol and reference symbol. Simulation results show that the modified viterbi algorithm improved gain 7.5 dB on STBC 2Tx-2Rx at $BER=10^{-2}$. Therefore the proposed scheme using STBC combined with convolution code can improve the transmission reliability and transmission efficiency.

Performance Improvement of STBC-OFDM System with Advanced Transmit Diversity in Mobile Communications Environment (이동통신 환경에서 개선된 송신 다이버시티를 이용하는 STBC-OFDM 시스템의 성능 개선)

  • 김장욱;양희진;오창헌;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.444-450
    • /
    • 2004
  • In mobile communications environment, STBC-OFDM(Space Time Block Code-Orthogonal Frequency Division Multiplexing) system with transmit diversity obtains the MRRC(Maximal Ratio Receiver Combining) diversity gain in time-invariant channel between two received symbols. But in time-variant channel, due to the interference between received symbols, MRRC diversity gain cant be obtained. So, when the mobile device with transmit diversity moves in high speed, the scheme to reduce the performance degradation due to the interference is needed. In this paper, we propose the receiver architecture with advanced transmit diversity, which improves the performance of STBC-OFDM system. The proposed architecture obtains the diversity gain without the change of transmit bandwidth at the receiver with the interference canceller using ZF(Zero Forcing) algorithm. Simulation results show performance improvement as doppler shift is increasing.