• Title/Summary/Keyword: space-filling optimization

검색결과 17건 처리시간 0.021초

크리깅의 실험계획법 (Design of Experiment for kriging)

  • 정재준;이창섭;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1846-1851
    • /
    • 2003
  • Approximate optimization has become popular in engineering field such as MDO and Crash analysis which is time consuming. To accomplish efficient approximate optimization, accuracy of approximate model is very important. As surrogate model, Kriging have been widely used approximating highly nonlinear system . Because Kriging employs interpolation method, it is adequate for deterministic computer simulation. Because there are no random errors and measurement errors in deterministic computer simulation, instead of classical DOE ,space filling experiment design which fills uniformly design space should be applied. In this work, various space filling designs such as maximin distance design, maximum entropy design are reviewed. And new design improving maximum entropy design is suggested and compared.

  • PDF

공간 질의 최적화를 위한 힐버트 공간 순서화에 따른 공간 분할 (Spatial Partitioning using filbert Space Filling Curve for Spatial Query Optimization)

  • 황환규;김현국
    • 정보처리학회논문지D
    • /
    • 제11D권1호
    • /
    • pp.23-30
    • /
    • 2004
  • 공간 질의 크기에 대한 근사치를 구하기 위해서는 입력 데이터 공간을 분할한 후 분할된 영역에 대하여 질의 결과 크기를 추정한다. 본 논문에서는 데이터 편재가 심한 공간 데이터에 대한 질의 크기 추정의 문제를 논의한다. 공간을 분할하는 기법으로 관계 데이터베이스에서 많이 사용되는 너비 균등, 높이 균등 히스토그램에 해당되는 면적 균등, 개수 균등 분할에 대한 방법을 검토하고 공간 인덱싱에 기초한 공간 분할방법에 대해서 알아본다. 본 논문에서는 공간 순서화 기법인 힐버트 공간 채움 곡선을 이용한 공간 분할을 제안한다. 제안한 방법과 기존의 방법을 실제 데이터와 인위 데이터를 사용하여 편재된 공간 데이터에 대한 질의 결과 크기의 추정에 대한 정확도를 비교한다. 본 실험에서 힐버트 채움 곡선에 의한 공간 분할이 공간 질의 크기 버켓 수의 변화, 데이터 위치 편재도의 변화, 데이터 크기의 변화에 대해서 기존의 분할 방법보다 질의 결과 크기 추정에 대해서 우수한 성능을 보였다.

설계공간 최적화를 이용한 뼈 성장 모사 (A Simulation Method for Bone Growth Using Design Space Optimization)

  • 장인권;곽병만
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.722-727
    • /
    • 2006
  • Bone fracture healing is one of the important topics in biomechanics, demanding computation simulations due to the difficulty of obtaining experimental or clinical results. In this study, we adopt the design space optimization method which was established by the authors as a tool for the simulation of bone growth using its evolutionary characteristics. As the mechanical stimulus, strain energy density is used. We assume that bone tissues over a threshold strain energy density will be differentiated and bone tissues below another threshold will be resorbed. Under compression and torsion as loadings, the filling process of the defect is well illustrated following the given mechanical criterion. It is shown that the design space optimization is an excellent tool for simulating the evolutionary process of bone growth, which has not been possible otherwise.

Optimal Latinized partially stratified sampling for structural reliability analysis

  • Majid Ilchi Ghazaan;Amirreza Davoodi Yekta
    • Structural Engineering and Mechanics
    • /
    • 제92권1호
    • /
    • pp.111-120
    • /
    • 2024
  • Sampling methods are powerful approaches to solving the problems of structural reliability analysis and estimating the failure probability of structures. In this paper, a new sampling method is proposed offering lower variance and lower computational cost for complex and high-dimensional problems. The method is called Optimal Latinized partially stratified sampling (OLPSS) as it is based upon the Latinized Partially Stratified Sampling (LPSS) which itself is based on merging Stratified Sampling (SS) and Latin Hypercube Sampling (LHS) algorithms. While LPSS has a low variance, it may suffer from a lack of good space-filling of its generated samples in some cases. In the OLPSS, this issue has been resolved by employing a new columnwise-pairwise exchange optimization procedure for sample generation. The efficiency of the OLPSS has been tested and reported under several benchmark mathematical functions and structural examples including structures with a large number of variables (e.g., a structure with 67 variables). The proposed method provides highly accurate estimates of the failure probability of structures with a significantly lower variance relative to the Monte Carlo simulations, Latin Hypercube, and standard LPSS.

크리킹을 이용한 최적화 알고리즘 (An Optimization Algorithm Using Kriging)

  • 박정선;노영희;임종빈
    • 한국항공운항학회지
    • /
    • 제14권1호
    • /
    • pp.36-42
    • /
    • 2006
  • Kriging has been effectively used to approximate for optimization. This study has been devised to improve efficiency and accuracy of approximate optimal design using Kriging. The design of experiments (DOE), the classical design and space-filling design, are used to provide maximum information using minimum number of design of experiments. The proposed methodology is applied to the designs of 3-bar truss and Sandgren's pressure vessel.

  • PDF

사출성형 설계에서 캐비티 충전 균형을 위한 수지 주입구의 최적 위치 결정에 관한 연구 (A Study on Determining Optimal Gate Positions for Cavity Fill-Uniformity in Injection Molding Design)

  • 박종천;성영규
    • 한국기계가공학회지
    • /
    • 제9권6호
    • /
    • pp.21-28
    • /
    • 2010
  • This study shows an optimization procedure for an automatic determination on the gate position to ensure the fill-uniformity within a part cavity by using the injection molding simulation. For an optimization, the maximum pressure-difference within a part cavity induced at the stage of filling is used to evaluate degree of fill-uniformity. In addition, a direct search scheme based on the reduction of design space is developed and applied in the optimization problem. This corresponding proposed methodology was applied in the optimization on the gate location for a CD-tray molding, as a result, showed the improvement of the fill-uniformity within the cavity.

메타모델 기반 다단계 해석을 이용한 순차적 최적설계 알고리듬 (A Sequential Optimization Algorithm Using Metamodel-Based Multilevel Analysis)

  • 백석흠;김강민;조석수;장득열;주원식
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.892-902
    • /
    • 2009
  • An efficient sequential optimization approach for metamodel was presented by Choi et al. This paper describes a new approach of the multilevel optimization method studied in Refs. [2] and [20,21]. The basic idea is concerned with multilevel iterative methods which combine a descent scheme with a hierarchy of auxiliary problems in lower dimensional subspaces. After fitting a metamodel based on an initial space filling design, this model is sequentially refined by the expected improvement criterion. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to understand and use. As a check on effectiveness, the proposed method is applied to an engineering example.

메타모델 기반 다단계 최적설계에 대한 순차적 알고리듬 (A Sequential Algorithm for Metamodel-Based Multilevel Optimization)

  • 김강민;백석흠;홍순혁;조석수;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1198-1203
    • /
    • 2008
  • An efficient sequential optimization approach for metamodel was presented by Choi et al [6]. This paper describes a new approach of the multilevel optimization method studied in Refs. [5] and [21-25]. The basic idea is concerned with multilevel iterative methods which combine a descent scheme with a hierarchy of auxiliary problems in lower dimensional subspaces. After fitting a metamodel based on an initial space filling design, this model is sequentially refined by the expected improvement criterion. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to understand and use. As a check on effectiveness, the proposed method is applied to a classical cantilever beam.

  • PDF

An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions

  • Azar, Bahman Farahmand;Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.979-999
    • /
    • 2015
  • This paper proposes a novel reliability analysis method which computes reliability index, most probable point and probability of failure of uncertain systems more efficiently and accurately with compared to Monte Carlo, first-order reliability and response surface methods. It consists of Initial and Simulation steps. In Initial step, a number of space-filling designs are selected throughout the variables space, and then in Simulation step, performances of most of samples are estimated via interpolation using the space-filling designs, and only for a small number of the samples actual performance function is used for evaluation. In better words, doing so, we use a simple interpolation function called "reduced" function instead of the actual expensive-to-evaluate performance function of the system to evaluate most of samples. By using such a reduced function, total number of evaluations of actual performance is significantly reduced; hence, the method can be called Reduced Function Evaluations method. Reliabilities of six examples including series and parallel systems with multiple failure modes with truncated and/or non-truncated random variables are analyzed to demonstrate efficiency, accuracy and robustness of proposed method. In addition, a reliability-based design optimization algorithm is proposed and an example is solved to show its good performance.

벌칙함수 기반 크리깅메타모델의 순차적 유용영역 실험계획 (Sequential Feasible Domain Sampling of Kriging Metamodel by Using Penalty Function)

  • 이태희;성준엽;정재준
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.691-697
    • /
    • 2006
  • Metamodel, model of model, has been widely used to improve an efficiency of optimization process in engineering fields. However, global metamodels of constraints in a constrained optimization problem are required good accuracy around neighborhood of optimum point. To satisfy this requirement, more sampling points must be located around the boundary and inside of feasible region. Therefore, a new sampling strategy that is capable of identifying feasible domain should be applied to select sampling points for metamodels of constraints. In this research, we suggeste sequential feasible domain sampling that can locate sampling points likely within feasible domain by using penalty function method. To validate the excellence of feasible domain sampling, we compare the optimum results from the proposed method with those form conventional global space-filling sampling for a variety of optimization problems. The advantages of the feasible domain sampling are discussed further.