• Title/Summary/Keyword: space search optimization algorithm

Search Result 167, Processing Time 0.02 seconds

Optimal Shape of Blunt Device for High Speed Vehicle

  • Rho, Joo-Hyun;Jeong, Seongmin;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.285-295
    • /
    • 2016
  • A contact strip shape of a high speed train pantograph system was optimized with CFD to increase the aerodynamic performance and stability of contact force, and the results were validated by a wind tunnel test. For design of the optimal contact strip shape, a Kriging model and genetic algorithm were used to ensure the global search of the optimal point and reduce the computational cost. To enhance the performance and robustness of the contact strip for high speed pantograph, the drag coefficient and the fluctuation of the lift coefficient along the angle of attack were selected as design objectives. Aerodynamic forces were measured by a load cell and HWA (Hot Wire Anemometer) was used to measure the Strouhal number of wake flow. PIV (Particle Image Velocimetry) was adopted to visualize the flow fields. The optimized contact strip shape was shown a lower drag with smaller fluctuation of vertical lift force than the general shaped contact strip. And the acoustic noise source strength of the optimized contact strip was also reduced. Finally, the reduction amount of drag and noise was assessed when the optimized contact strip was applied to three dimensional pantograph system.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Robust Face and Facial Feature Tracking in Image Sequences (연속 영상에서 강인한 얼굴 및 얼굴 특징 추적)

  • Jang, Kyung-Shik;Lee, Chan-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1972-1978
    • /
    • 2010
  • AAM(Active Appearance Model) is one of the most effective ways to detect deformable 2D objects and is a kind of mathematical optimization methods. The cost function is a convex function because it is a least-square function, but the search space is not convex space so it is not guaranteed that a local minimum is the optimal solution. That is, if the initial value does not depart from around the global minimum, it converges to a local minimum, so it is difficult to detect face contour correctly. In this study, an AAM-based face tracking algorithm is proposed, which is robust to various lighting conditions and backgrounds. Eye detection is performed using SIFT and Genetic algorithm, the information of eye are used for AAM's initial matching information. Through experiments, it is verified that the proposed AAM-based face tracking method is more robust with respect to pose and background of face than the conventional basic AAM-based face tracking method.

Design of Optimized Fuzzy Controller by Means of HFC-based Genetic Algorithms for Rotary Inverted Pendulum System (회전형 역 진자 시스템에 대한 계층적 공정 경쟁 기반 유전자 알고리즘을 이용한 최적 Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.236-242
    • /
    • 2008
  • In this paper, we propose an optimized fuzzy controller based on Hierarchical Fair Competition-based Genetic Algorithms (HFCGA) for rotary inverted pendulum system. We adopt fuzzy controller to control the rotary inverted pendulum and the fuzzy rules of the fuzzy controller are designed based on the design methodology of Linear Quadratic Regulator (LQR) controller. Simple Genetic Algorithms (SGAs) is well known as optimization algorithms supporting search of a global character. There is a long list of successful usages of GAs reported in different application domains. It should be stressed, however, that GAs could still get trapped in a sub-optimal regions of the search space due to premature convergence. Accordingly the parallel genetic algorithm was developed to eliminate an effect of premature convergence. In particular, as one of diverse types of the PGA, HFCGA has emerged as an effective optimization mechanism for dealing with very large search space. We use HFCGA to optimize the parameter of the fuzzy controller. A comparative analysis between the simulation and the practical experiment demonstrates that the proposed HFCGA based fuzzy controller leads to superb performance in comparison with the conventional LQR controller as well as SGAs based fuzzy controller.

Shape Scheme and Size Discrete Optimum Design of Plane Steel Trusses Using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 평면 철골트러스의 형상계획 및 단면 이산화 최적설계)

  • Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.89-97
    • /
    • 2004
  • The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.

  • PDF

Optimized Module Design for Berth Planning of Logistics Information System Using Tabu Search Algorithm (타부탐색을 이용한 물류정보시스템의 선석계획 최적화 모듈 설계)

  • Hong, Dong-Hee;Kim, Chang-Gon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.63-70
    • /
    • 2004
  • Port operation is largely divided into gate operation, yard operation and berth operation. Operation strategy and optimal resource allocation for three parts are important in the productivity of the port operation.. Especially the resource allocation planning in berth operation needs optimization, because it is directly connected with the processing time in shipping. Berth planning is not independent on recourse allocation but interrelated with yard stacking area allocation. Therefore, we design the optimized module of berth planning and give priority to interrelationship with yard space allocation, while existing studies design independent resource allocation in berth planning. We suggest constraints by mathematical method, and they are related to yard stacking area allocation with existing constraints. Then we look for solutions, use tabu search to optimize them, and design optimized the berth planning module. In the performance test of optimized module design of berth planning, we find that the berth planning with yard stacking area allocation takes less processing time than without yard stacking area allocation.

A Study of population Initialization Method to improve a Genetic Algorithm on the Weapon Target Allocation problem (무기할당문제에서 유전자 알고리즘의 성능을 개선하기 위한 population 초기화 방법에 관한 연구)

  • Hong, Sung-Sam;Han, Myung-Mook;Choi, Hyuk-Jin;Mun, Chang-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.540-548
    • /
    • 2012
  • The Weapon Target Allocation(WTA) problem is the NP-Complete problem. The WTA problem is that the threatful air targets are assigned by weapon of allies for killing the targets. A good solution of NP-complete problem is heuristic algorithms. Genetic algorithms are commonly used heuristic for global optimization, and it is good solution on the diverse problem domain. But there has been very little research done on the generation of their initial population. The initialization of population is one of the GA step, and it decide to initial value of individuals. In this paper, we propose to the population initialization method to improve a Genetic Algorithm. When it initializes population, the proposed algorithm reflects the characteristics of the WTA problem domain, and inherits the dominant gene. In addition, the search space widely spread in the problem space to find efficiently the good quality solution. In this paper, the proposed algorithm to verify performance examine that an analysis of various properties and the experimental results by analyzing the performance compare to other algorithms. The proposed algorithm compared to the other initialization methods and a general genetic algorithm. As a result, the proposed algorithm showed better performance in WTA problem than the other algorithms. In particular, the proposed algorithm is a good way to apply to the variety of situation WTA problem domain, because the proposed algorithm can be applied flexibly to WTA problem by the adjustment of RMI.

Advanced Optimization of Reliability Based on Cost Factor and Deploying On-Line Safety Instrumented System Supporting Tool (비용 요소에 근거한 신뢰도 최적화 및 On-Line SIS 지원 도구 연구)

  • Lulu, Addis;Park, Myeongnam;Kim, Hyunseung;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.32-40
    • /
    • 2017
  • Safety Instrumented Systems (SIS) have wide application area. They are of vital importance at process plants to detect the onset of hazardous events, for instance, a release of some hazardous material, and for mitigating their consequences to humans, material assets, and the environment. The integrated safety systems, where electrical, electronic, and/or programmable electronic (E/E/PE) devices interact with mechanical, pneumatic, and hydraulic systems are governed by international safety standards like IEC 61508. IEC 61508 organises its requirements according to a Safety Life Cycle (SLC). Fulfilling these requirements following the SLC can be complex without the aid of SIS supporting tools. This paper presents simple SIS support tool which can greatly help the user to implement the design phase of the safety lifecycle. This tool is modelled in the form of Android application which can be integrated with a Web-based data reading and modifying system. This tool can reduce the computation time spent on the design phase of the SLC and reduce the possible errors which can arise in the process. In addition, this paper presents an optimization approach to SISs based on cost measures. The multi-objective genetic algorithm has been used for the optimization to search for the best combinations of solutions without enumeration of all the solution space.

Searching for an Intra-block Remarshalling Plan for Multiple Transfer Cranes (복수 트랜스퍼 크레인을 활용하는 블록 내 재정돈 계획 탐색)

  • Oh Myung-Seob;Kang Jae-Ho;Ryu Kwang-Ryel;Kim Kap-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.7
    • /
    • pp.624-635
    • /
    • 2006
  • This paper applies simulated annealing algorithm to the problem of generating a plan for intra-block remarshalling with multiple transfer cranes. Intra-block remarshalling refers to the task of rearranging containers scattered around within a block into certain designated target areas of the block so that they can be efficiently loaded onto a ship. In generating a remarshalling plan, the predetermined container loading sequence should be considered carefully to avoid re-handlings that may delay the loading operations. In addition, the required time for the remarshalling operation itself should be minimized. A candidate solution in our search space specifies target locations of the containers to be rearranged. A candidate solution is evaluated by deriving a container moving plan and estimating the time needed to execute the plan using two cranes with minimum interference. Simulation experiments have shown that our method can generate efficient remarshalling plans in various situations.

Optimization of Warp-wide CUDA Implementation for Parallel Shifted Sort Algorithm (병렬 Shifted Sort 알고리즘의 Warp 단위 CUDA 구현 최적화)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.739-745
    • /
    • 2017
  • This paper presents and discusses an implementation of the GPU shifted sorting method to find approximate k nearest neighbors which executes within "warp", the minimum execution unit in GPU parallel architecture. Also, this paper presents the comparison results with other two common nearest neighbor searching methods, GPU-based kd-tree and ANN (Approximate Nearest Neighbor) library. The proposed implementation focuses on the cases when k is small, i.e. 2, 4, 8, and 16, which are handled efficiently within warp to consider it is very common for applications to handle small k's. Also, this paper discusses optimization ways to implementation by improving memory management in a loop for the CUB open library and adopting CUDA commands which are supported by GPU hardware. The proposed implementation shows more than 16-fold speed-up against GPU-based other methods in the tests, implying that the improvement would become higher for more larger input data.