DOI QR코드

DOI QR Code

Advanced Optimization of Reliability Based on Cost Factor and Deploying On-Line Safety Instrumented System Supporting Tool

비용 요소에 근거한 신뢰도 최적화 및 On-Line SIS 지원 도구 연구

  • Lulu, Addis (Department of Chemical Engineering, Myongji University) ;
  • Park, Myeongnam (Department of Chemical Engineering, Myongji University) ;
  • Kim, Hyunseung (Department of Chemical Engineering, Myongji University) ;
  • Shin, Dongil (Department of Chemical Engineering, Myongji University)
  • Received : 2016.04.04
  • Accepted : 2017.04.25
  • Published : 2017.04.30

Abstract

Safety Instrumented Systems (SIS) have wide application area. They are of vital importance at process plants to detect the onset of hazardous events, for instance, a release of some hazardous material, and for mitigating their consequences to humans, material assets, and the environment. The integrated safety systems, where electrical, electronic, and/or programmable electronic (E/E/PE) devices interact with mechanical, pneumatic, and hydraulic systems are governed by international safety standards like IEC 61508. IEC 61508 organises its requirements according to a Safety Life Cycle (SLC). Fulfilling these requirements following the SLC can be complex without the aid of SIS supporting tools. This paper presents simple SIS support tool which can greatly help the user to implement the design phase of the safety lifecycle. This tool is modelled in the form of Android application which can be integrated with a Web-based data reading and modifying system. This tool can reduce the computation time spent on the design phase of the SLC and reduce the possible errors which can arise in the process. In addition, this paper presents an optimization approach to SISs based on cost measures. The multi-objective genetic algorithm has been used for the optimization to search for the best combinations of solutions without enumeration of all the solution space.

SIS는 공정안전시스템 분야에서 폭넓게 활용될 수 있는 계장안전시스템이다. SIS는 유해화학물질 누출 사고로부터 인간, 물질적 자산 그리고 환경에 미치는 피해를 줄이기 위해 필수적이다. 현재 전기, 전자 그리고 프로그래밍 가능한 전자 (E / E/ PE) 장치가 기계, 공압 및 유압 시스템과 상호 작용하는 통합 안전 시스템은 IEC 61508과 같은 국제 안전 표준을 따르도록 되어있다. IEC 61508은 안전 수명주기의 모든 사항을 규정한다. SIS 지원 도구 없이 안전 수명주기에 따라 IEC 61508의 요구 사항을 충족시키는 것은 복잡한 일이다. 본 연구에서는, 사용자가 보다 쉽게 안전 수명주기의 설계 단계를 구현할 수 있도록 도움을 줄 수 있는 On-Line SIS 지원 도구를 제시하였다. On-Line SIS 지원 도구는 데이터 읽기 및 수정 시스템과 통합될 수 있는 안드로이드 응용 프로그램의 형태로 되어있다. 이 도구는 안전 수명주기의 설계 단계에서 소요되는 계산 시간을 줄이고 계산 과정에서 발생할 수 있는 오류를 줄인다. 또한 On-Line SIS 지원 도구는 비용 요소에 근거한 최적화 접근법을 제시할 수 있으며, multi-objective GA를 사용하여 최적의 솔루션 조합을 찾을 수 있도록 하였다.

Keywords

References

  1. Avenm, T., Risk Analysis: Assessing Uncertainties Beyond Expected Values and Probabilities. Chichester, UK: John Wiley & Sons, Inc, (2008)
  2. Marszal, E. M. and Scharpf, E. W., Safety integrity level selection: systematic methods including layer of protection analysis. North Carolina: ISA Research Triangle Park, (2002)
  3. International Electrotechnical Commission, Functional safety of electrical/electronic/programmable electronic safety related systems, IEC 61508, (2010)
  4. Instrumentation, Systems, and Automation Society, Safety Instrumented Functions (SIF)-Safety Integrity Level (SIL) Evaluation Techniques Part 2, North Carolina, ISA Research Triangle Park, (2002)
  5. Gruhn, P., and Cheddie, H, L., Safety instrumented systems: design, analysis, and justification. North Carolina: ISA Research Triangle Park, (2006)
  6. Hui, J., A contribution to reliability assessment of safety-instrumented systems. Ph.D. Thesis, Norwegian University of Science and Technology, (2013)
  7. Kang, H., Automated Synthesis and Design of Safety Instrumented Systems for Toxic Gas Processes. M.S. Thesis, Myongji University, Korea, (2016)
  8. Lothar, L., "An Optimization Approach for Safety Instrumented System Design", Reliability and Maintainability Symposium (RAMS) Proceedings-Annual. IEEE, (2011)
  9. Lundteigen, M. A., Safety instrumented systems in the oil and gas industry: Concepts and methods for safety and reliability assessments in design and operation. Ph.D. Thesis, Norwegian University of Science and Technology, (2011)
  10. Nilanchala, Android Studio Project Structure. Retrieved from http://stacktips.com/tutorials/Android/Android-Studio-project-structure, (2014)
  11. Patel V., How to Use Android Data Binding. Developer.com.Retrieved from http://www.developer. com/ws/Android/programming/how-to-use-Android-data-binding.html, (2016)
  12. Rausand, M., Reliability of safety-critical systems: theory and application. Hoboken, New Jersey: Willey & Sons, Inc, (2014)
  13. Safety Calculator PAScal, Retrieved from https://www.pilz.com/pt-PT/eshop/0010500 2187038/PAScal-Safety-Calculator, (2016)
  14. Timms, C., "Software Tools for the Lifecycle Support of Safety Instrumented Systems", Measurement and control, 39(10), pp.312-317, (2006) https://doi.org/10.1177/002029400603901004
  15. Torres-Echeverria, A., Modelling and Optimizatio of Safety Instrumented Systems based on Dependability and cost measures. Ph.D. Thesis, The University of Sheffield, (2009)
  16. Yokogawa System Center, "General Reliability Configurator, User's Guide", Europe B.V: Yokogawa System Center, (2006)