• Title/Summary/Keyword: Safety Life Cycle

Search Result 457, Processing Time 0.028 seconds

A study on the Life Cycle Model to effectively conduct the National Railway R&D Project (국가철도연구개발프로젝트의 효과적인 수행을 위한 생명주기모델 개발에 관한 연구)

  • Choi, Yo Chul;Lee, Jae Chon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • As a government agency or the Government-donated Research Institute or industrial research institute is intended to develop a product or to construct a system such as a railway safety systems by research and development process, a life cycle model leading a product development or a research and development is essential to them to systematically and effectively progress it. In this paper, the refined life cycle model to effectively conduct the national railway safety project consists of the life cycle phases and their detail descriptions with reference to other life cycle model in the international standard and the other national guidance and other industrial domain such as ship-building, weapon system, and aerospace areas, the proposed life cycle model in the paper considerably reflects the characteristics of the traditional research and development project in railway safety domain. A guidance of a life cycle model which based on lots of the life cycle model in other domains proposes additionally.

  • PDF

A Study on a Safety Life Cycle of IEC 61508 for Functional Safety (기능안전을 위한 IEC 61508의 안전수명주기에 관한 연구)

  • Kim, Sung Kyu;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • The IEC 61508 standard was established to specify the functional safety of E/E/PE safety-related systems. Safety life cycle to provide the framework and direction for the application of IEC 61508 is included in this standard. In this paper, we describe overviews, objects, scopes, requirements and activities of each phase in safety life cycle. In addition, we introduce safety integrity level(SIL) which is used for verifying the safety integrity requirements of E/E/PE system and perform a case study to estimate hardware SIL by FMEDA. The SIL is evaluated by two criteria. One of them is the architectural constraints which restrict the maximum SIL by combination of SFF and HFT. The other is the probability of failure which is classified into PFD and PFH based on frequency of demand and calculated by safe or dangerous failure rates.

A Study of Safety Life-cycle for Integrated Centralized Traffic Control(CTC) (통합사령실의 소프트웨어 개발에서 안전성 라이프사이클 개선에 대한 연구)

  • Ohn, Jung-Ghun;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.959-963
    • /
    • 2007
  • After the year of 2000, the need of safety increases in field of railroad. The project for developing Integrated Centralized Traffic Control(CTC) center started at 2002 to control the full domestic railroad network. A traffic control software was required the safety activity and assessment, according to 'KORAIL Instruction number 2001-49'. There were many trials and errors to perform safety activity because the technology and recognition of safety activity is in primary stage. However the safety activities are gradually stabilized. This paper describes the safety life-cycle and development life-cycle of Integrated CTC S/W and a suitable life-cycle of safety to develop S/W of Integrated CTC.

  • PDF

A Study on the Optimal Equipment Selection of Series Systems using Life Cycle Cost and Failure Cost (Failure Cost와 Life Cycle Cost를 고려한 연속시스템에 대한 최적 장치 선택에 관한 연구)

  • Jin Sang-Hwa;Kim Yong-Ha;Song Hee-Oeul;Yeo Yeong-Koo;Kim In-Won
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.55-59
    • /
    • 2004
  • In this study, the required life cycle cost is evaluated in consideration of the equipment's availability during its lift cycle. In order to meet the maximum availability required by the process, the failure cost and life cycle cost is assessed The optimal equipment selection method is presented according to the analysis of the failure cost and life cycle cost. For the systems in which equipments are connected serially, the optimal equipments are selected by minimizing the life cycle cost and satisfying the required system availability goal. In addition, the selection methods and lift cycle cost are analyzed according to the cost variation of the equipment. By using the life cycle evaluation procedure, the failure cost and maintenance cost needed during the life cycle of the equipment can be presented.

A Study on the Correlation between Optimal Safety of Structures and Minimization of Life Cycle Cost(LCC) (구조물의 최적안전지수와 생애주기비용의 상관관계에 관한 연구)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.94-98
    • /
    • 2014
  • This study was intend to develop the optimal design method of suspension bridge by the reliability analysis based on minimization of life cycle cost(LCC). The reliability analysis was performed considering aleatory uncertainties included in the result of numerical analysis. The optimal design was estimated based on life-cycle cost analysis depending on the result of reliability analysis. As the effect of epistemic uncertainty, the safety index (beta), failure probability (pf) and minimum life cycle cost were random variables. The high-level distributions were generated, from which the critical percentile values were obtained for a conservative bridge design through sensitivity assessment.

Decision Method on Target Safety Level in Suspension Bridges by Minimization of Life Cycle Cost (생애주기비용의 최소화에 의한 현수교의 목표안전수준 결정방법)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.62-68
    • /
    • 2009
  • Life Cycle Cost(LCC) is adopted to decide the target of safety level in designing suspension bridges. The LCC are evaluated considering two types of uncertainty; aleatory and epistemic. The nine alternative designs of suspension bridge are simulated to decide the safety level which can minimize the LCC. The LCC is calculated through the probability of failure and safety index including the uncertainty. This method results in the useful tool deciding the optimum safety level with minimal LCC as the main design factor.

Optimal Design of PSC-I Girder Bridge Considering Life Cycle Cost (생애주기비용을 고려한 PSC-I형 교량의 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the procedure for the optimal design of a PSC-I girder bridge considering life cycle cost (LCC). The load carrying capacity curves for the concrete deck, PSC-I girder and $\pi$-type pier were derived and used for the estimate of service lives. Total life cycle cost for the service life was calculated as sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The advanced First Order Second Moment method was used to estimate the damage cost. The optimization method was applied to the design of PSC-I girder bridge. The objective function was set to the annual cost, which is defined by dividing the total life cycle cost by the service life, and constraints were formulated on the basis of Korean Standards. The optimal design was performed for various service lives and the effects of design factors were investigated.

Life Cycle Cost Method by Segregation of Safety and Function (기능특성을 고려한 생애주기 비용함수)

  • Lee, Joon-Gu;Kim, Han-Jung;Yoon, Seong-Su;Choi, Won;Lee, Hyung-Jin;Kim, Jong-Ok;Jung, Nam-Su;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.61-71
    • /
    • 2008
  • An advanced model for assessing life cycle cost of the facility containing several subdivisions has been proposed with systems engineering approach. This model evaluates the maintenance cost in the sphere of the safety as well as in that of its functionality. The proposed approach has been shown to be more reasonable and practical than existing models. The serviceability and reasonability have been proved through evaluating life cycle cost of the reservoir which is a representative agricultural facility. In addition, the proposed method is helpful to make a maintenance strategy using the survival probability in the point of safety and functionality.

Development and Validation of Life Safety Awareness Scale of High School Students and Analysis of Interindividual Differences

  • Lee, Soon-Beom;Kim, Eun-Mi;Kong, Ha-Sung
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.104-119
    • /
    • 2022
  • Life safety awareness level diagnosis is necessary for customized safety education and continuous safety awareness. As the starting stage of safety education for each life cycle, a scale that has verified the reliability and validity of high school students' life safety awareness has not yet been developed. In this context, the purpose of this study is to develop and validate the life safety awareness scale of high school students and to analyze interindividual differences. Questionnaire data was collected from April to June 2022 from 834 students in the first, second, and third grades of high schools in △△ city in Jeollabuk-do. A final 25-item scale was developed using the preliminary survey, preliminary test, the main test, descriptive statistical analysis, and exploratory and confirmatory factor analysis. This scale consists of four sub-factors: 'safety prevention', 'safety knowledge', 'safety preparation', and 'safety protection'. Good reliability and validity were verified by analysis of content validity and construct validity. The generalizability of the scale was verified by crossover validation between the search group and the crossover group. Based on the interindividual differences analysis, although there was a difference between genders in life safety awareness, there was no difference by grade level and academic achievement. This study is significant in developing the first valid scale that can measure high school students' life safety awareness and providing the necessity and rationale for life safety education by life cycle considering individual gender differences.