• Title/Summary/Keyword: space search optimization algorithm

Search Result 167, Processing Time 0.027 seconds

Crack identification based on synthetic artificial intelligent technique (통합적 인공지능 기법을 이용한 결함인식)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF

An Improved Particle Swarm Optimization Algorithm for Care Worker Scheduling

  • Akjiratikarl, Chananes;Yenradee, Pisal;Drake, Paul R.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.171-181
    • /
    • 2008
  • Home care, known also as domiciliary care, is part of the community care service that is a responsibility of the local government authorities in the UK as well as many other countries around the world. The aim is to provide the care and support needed to assist people, particularly older people, people with physical or learning disabilities and people who need assistance due to illness to live as independently as possible in their own homes. It is performed primarily by care workers visiting clients' homes where they provide help with daily activities. This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance traveled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multi-dimensional point in space which represents the corresponding schedule for care workers and their clients. Each dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous position value of each dimension determines the care worker to be assigned and also the assignment priority. A heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Priority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodology is implemented, tested, and compared with existing solutions for some 'real' problem instances.

Imrovement of genetic operators using restoration method and evaluation function for noise degradation (잡음훼손에 적합한 평가함수와 복원기법을 이용한 유전적 연산자의 개선)

  • 김승목;조영창;이태홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.52-65
    • /
    • 1997
  • For the degradation of severe noise and ill-conditioned blur the optimization function has the solution spaces which have many local optima around global solution. General restoration methods such as inverse filtering or gradient methods are mainly dependent on the properties of degradation model and tend to be isolated into a local optima because their convergences are determined in the convex space. Hence we introduce genetic algorithm as a searching method which will search solutions beyond the convex spaces including local solutins. In this paper we introudce improved evaluation square error) and fitness value for gray scaled images. Finally we also proposed the local fine tunign of window size and visit number for delicate searching mechanism in the vicinity of th global solution. Through the experiental results we verified the effectiveness of the proposed genetic operators and evaluation function on noise reduction over the conventional ones, as well as the improved performance of local fine tuning.

  • PDF

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

Optimization of Layout Design in an AS/RS for Maximizing its Throughput Rate

  • Yang, M.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.109-121
    • /
    • 1992
  • In this paper, we address a layout design problem for determining a K-class-based dedicated storage layout in an automated storage retrieval system. K-class-based dedicated storage employs K zones in which lots from a class of products are stored randomly. Zones form a partition of storage locations. Our objective function is to minimize the expected single command travel time, which is expressed as a set function of space requirements for zones, average demand rates from classes, and one-way travel times from the pickup/deposit station to locations. We construct a heuristic algorithm based on analytical results and a local search method, the methodology deveolped can be used with easily-available data by warehouse planners to improve the throughput capacity of a conventional warehouse as well as an AS/RS.

  • PDF

GWO-based fuzzy modeling for nonlinear composite systems

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.513-521
    • /
    • 2023
  • The goal of this work is to create a new and improved GWO (Grey Wolf Optimizer), the so-called Robot GWO (RGWO), for dynamic and static target tracking involving multiple robots in unknown environmental conditions. From applying ourselves with the Gray Wolf Optimization Algorithm (GWO) and how it works, as the name suggests, it is a nature-inspired metaheuristic based on the behavior of wolf packs. Like other nature-inspired metaheuristics such as genetic algorithms and firefly algorithms, we explore the search space to find the optimal solution. The results also show that the improved optimal control method can provide superior power characteristics even when operating conditions and design parameters are changed.

Carrying pose optimization by using wrench space (렌치 스페이스를 이용한 물체 들기 자세 최적화)

  • Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.4
    • /
    • pp.19-26
    • /
    • 2015
  • This paper presents a method for optimizing a carrying pose of human body for a given object. The inputs are articulated human body model and and arbitrary-shaped object. We assume that the object is big and heavy, so that both arms should be used to carry it. Unlike small and light objects, big and heaby objects can be hold by only a small range of body poses while keeping a physical statbility. We first introduce an algorithm that evaluates a physical stability of a given human body pose and object state (position and orientation). Then, we define a configuration space and search the space for the most stable carrying pose by using the evaluation algorithm. Finally, to demonstrate the usability of our method, we present the results which each is experimented with different shaped objects and additional user conditions.

Design of Fuzzy Prediction System based on Dual Tuning using Enhanced Genetic Algorithms (강화된 유전알고리즘을 이용한 이중 동조 기반 퍼지 예측시스템 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.184-191
    • /
    • 2010
  • Many researchers have been considering genetic algorithms to system optimization problems. Especially, real-coded genetic algorithms are very effective techniques because they are simpler in coding procedures than binary-coded genetic algorithms and can reduce extra works that increase the length of chromosome for wide search space. Thus, this paper presents a fuzzy system design technique to improve the performance of the fuzzy system. The proposed system consists of two procedures. The primary tuning procedure coarsely tunes fuzzy sets of the system using the k-means clustering algorithm of which the structure is very simple, and then the secondary tuning procedure finely tunes the fuzzy sets using enhanced real-coded genetic algorithms based on the primary procedure. In addition, this paper constructs multiple fuzzy systems using a data preprocessing procedure which is contrived for reflecting various characteristics of nonlinear data. Finally, the proposed fuzzy system is applied to the field of time series prediction and the effectiveness of the proposed techniques are verified by simulations of typical time series examples.

Simulation, analysis and optimal design of fuel tank of a locomotive

  • Yousefi, A. Karkhaneh;Nahvi, H.;Panahi, M. Shariat
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.151-161
    • /
    • 2014
  • In this paper, fuel tank of the locomotive ER 24 has been studied. Firstly the behavior of fuel and air during the braking time has been investigated by using a two-phase model. Then, the distribution of pressure on the surface of baffles caused by sloshing has been extracted. Also, the fuel tank has been modeled and analyzed using Finite Element Method (FEM) considering loading conditions suggested by the DIN EN 12663 standard and real boundary conditions. In each loading condition, high stressed areas have been identified. By comparing the distribution of pressure caused by sloshing phenomena and suggested loading conditions, optimization of the tank has been taken into consideration. Moreover, internal baffles have been investigated and by modifying their geometric properties, search of the design space has been done to reach the optimal tank. Then, in order to reduce the mass and manufacturing cost of the fuel tank, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Artificial Neural Networks (ANNs) have been employed. It is shown that compared to the primary design, the optimized fuel tank not only provides the safety conditions, but also reduces mass and manufacturing cost by %39 and %73, respectively.

Design of a Fuzzy Controller Using the Parallel Architecture of Random Signal-based Learning (병렬형 랜덤 신호 기반 학습을 이용한 퍼지 제어기의 설계)

  • Han, Chang-Wook;Oh, Se-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.62-66
    • /
    • 2011
  • This paper proposes a parallel architecture of random signal-based learning (PRSL), merged with simulated annealing (SA), to optimize the fuzzy logic controller (FLC). Random signal-based learning (RSL) finds the local optima very well, whereas it can not finds the global optimum in a very complex search space because of its serial nature. To overcome these difficulties, PRSL, which consists of serial RSL as a population, is considered. Moreover, SA is added to RSL to help the exploration. The validity of the proposed algorithm is conformed by applying it to the optimization of a FLC for the inverted pendulum.