• 제목/요약/키워드: space search optimization algorithm

검색결과 167건 처리시간 0.025초

Development of Optimal-Path Finding System(X-PATH) Using Search Space Reduction Technique Based on Expert System (전문가시스템을 이용한 최적경로 탐색시스템(X-PATH)의 개발)

  • 남궁성;노정현
    • Journal of Korean Society of Transportation
    • /
    • 제14권1호
    • /
    • pp.51-67
    • /
    • 1996
  • The optimal path-finding problem becomes complicated when multiple variables are simultaneously considered such as physical route length, degree of congestion, traffic capacity of intersections, number of intersections and lanes, and existence of free ways. Therefore, many researchers in various fields (management science, computer science, applied mathematics, production planning, satellite launching) attempted to solve the problem by ignoring many variables for problem simplification, by developing intelligent algorithms, or by developing high-speed hardware. In this research, an integration of expert system technique and case-based reasoning in high level with a conventional algorithms in lower level was attempted to develop an optimal path-finding system. Early application of experienced driver's knowledge and case data accumulated in case base drastically reduces number of possible combinations of optimal paths by generating promising alternatives and by eliminating non-profitable alternatives. Then, employment of a conventional optimization algorithm provides faster search mechanisms than other methods such as bidirectional algorithm and $A^*$ algorithm. The conclusion obtained from repeated laboratory experiments with real traffic data in Seoul metropolitan area shows that the integrated approach to finding optimal paths with consideration of various real world constraints provides reasonable solution in a faster way than others.

  • PDF

An Analytical Study on System Identification of Steel Beam Structure for Buildings based on Modified Genetic Algorithm (변형 유전 알고리즘을 이용한 건물 철골 보 구조물의 시스템 식별에 관한 해석적 연구)

  • Oh, Byung-Kwan;Choi, Se-Woon;Kim, Yousok;Cho, Tong-Jun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제27권4호
    • /
    • pp.231-238
    • /
    • 2014
  • In the buildings, the systems of structures are influenced by the gravity load changes due to room alteration or construction stage. This paper proposes a system identification method establishing mass as well as stiffness to parameters in model updating process considering mass change in the buildings. In this proposed method, modified genetic algorithm, which is optimization technique, is applied to search those parameters while minimizing the difference of dynamic characteristics between measurement and FE model. To search more global solution, the proposed modified genetic algorithm searches in the wider search space. It is verified that the proposed method identifies the system of structure appropriately through the analytical study on a steel beam structure in the building. The comparison for performance of modified genetic algorithm and existing simple genetic algorithm is carried out. Furthermore, the existing model updating method neglecting mass change is performed to compare with the proposed method.

A Study and Implementation of the Heuristic Autonesting Algorithm in the 2 Dimension Space (2차원 공간에서의 휴리스틱 배치 알고리즘 및 구현에 관한 연구)

  • 양성모;임성국;고석호;김현정;한관희
    • Korean Journal of Computational Design and Engineering
    • /
    • 제4권3호
    • /
    • pp.259-268
    • /
    • 1999
  • In order to reduce the cost of product and save the processing time, optimal nesting of two-dimensional part is an important application in number of industries like shipbuilding and garment making. There have been many studies on finding the optimal solution of two-dimensional nesting. The problem of two-dimensional nesting has a non-deterministic characteristic and there have been various attempts to solve the problem by reducing the size of problem rather than solving the problem as a whole. Heuristic method and linearlization are often used to find an optimal solution of the problem. In this paper, theoretical and practical nesting algorithm for rectangular, circular and irregular shape of two-dimensional parts is proposed. Both No-Fit-Polygon and Minkowski-Sum are used for solving the overlapping problem of two parts and the dynamic programming technique is used for reducing the number search spae in order to find an optimal solution. Also, nesting designer's expertise is complied into the proposed algorithm to supplement the heuristic method.

  • PDF

A Study on Stowage Automation Algorithm for Cargo Stowage Optimization of Vehicle Carriers (차량 운반선의 화물 적재 최적화를 위한 적재 자동화 알고리즘 연구)

  • JI Yeon Kim;Young-Jin Kang;Jeong, Seok Chan;Hoon Lee
    • The Journal of Bigdata
    • /
    • 제7권2호
    • /
    • pp.129-137
    • /
    • 2022
  • With the development of the 4th industry, the logistics industry is evolving into a smart logistics system. However, ship work that transports vehicles is progressing slowly due to various problems. In this paper, we propose an stowage automation algorithm that can be used for cargo loading of vehicle carriers that shortens loading and unloading work time. The stowage automation algorithm returns the shortest distance by searching for a loading space and a movable path in the ship in consideration of the structure of the ship. The algorithm identifies walls, ramps and vehicles that have already been shipped, and can work even with randomly placed. In particular, it is expected to contribute to developing a smart logistics system for vehicle carriers by referring to the ship's master plan to search for vehicle loading and unloading space in each port and predict the shortest movable path.

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

Study of the Constant Current Fuzzy Control System Design using CRS Algorithm during Inverter DC Resistance Spot Welding Process (인버터 DC 저항점용접 공정에서 CRS 알고리즘을 이용한 정전류 퍼지 제어시스템 설계에 관한 연구)

  • Park, Hyoung-Jin;Park, Pyeong-Won;Yu, Ji-Young;Kim, Dong-Cheol;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.76-83
    • /
    • 2010
  • The purpose of this study is to propose a method to decide near-optimal settings of the constant current fuzzy control parameters using a controlled random search. This method tries to find the near-optimal settings of the constant current fuzzy control parameters through experiments. It has an advantage of being able to carry out searches in the search domain which includes some irregular points. The method suggested in this study was used to determine the fuzzy control parameters by which the desired welding current were formed during inverter DC resistance spot welding. The output variable was the ITAE (integral of time multiplied by the absolute error). This output variable was determined according to the input variables, which are the GE, GDE, and GDU. This study described how to obtained near-optimal welding current condition over a wide search space conducting a relatively small number of experiments.

Optimal Spare Part Level in Multi Indenture and Multi Echelon Inventory Applying Marginal Analysis and Genetic Algorithm (한계분석법과 유전알고리즘을 결합한 다단계 다계층 재고모형의 적정재고수준 결정)

  • Jung, Sungtae;Lee, Sangjin
    • Korean Management Science Review
    • /
    • 제31권3호
    • /
    • pp.61-76
    • /
    • 2014
  • There are three methods for calculating the optimal level for spare part inventories in a MIME (Multi Indenture and Multi Echelon) system : marginal analysis, Lagrangian relaxation method, and genetic algorithm. However, their solutions are sub-optimal solutions because the MIME system is neither convex nor separable by items. To be more specific, SRUs (Shop Replaceable Units) are required to fix a defected LRU (Line Replaceable Unit) because one LRU consists of several SRUs. Therefore, the level of both SRU and LRU cannot be calculated independently. Based on the limitations of three existing methods, we proposes a improved algorithm applying marginal analysis on determining LRU stock level and genetic algorithm on determining SRU stock level. It can draw optimal combinations on LRUs through separating SRUs. More, genetic algorithm enables to extend the solution search space of a SRU which is restricted in marginal analysis applying greedy algorithm. In the numerical analysis, we compare the performance of three existing methods and the proposed algorithm. The research model guarantees better results than the existing analytical methods. More, the performance variation of the proposed method is relatively low, which means one execution is enough to get the better result.

Chaotic particle swarm optimization in optimal active control of shear buildings

  • Gharebaghi, Saeed Asil;Zangooeia, Ehsan
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.347-357
    • /
    • 2017
  • The applications of active control is being more popular nowadays. Several control algorithms have been developed to determine optimum control force. In this paper, a Chaotic Particle Swarm Optimization (CPSO) technique, based on Logistic map, is used to compute the optimum control force of active tendon system. A chaotic exploration is used to search the solution space for optimum control force. The response control of Multi-Degree of Freedom (MDOF) shear buildings, equipped with active tendons, is introduced as an optimization problem, based on Instantaneous Optimal Active Control algorithm. Three MDOFs are simulated in this paper. Two examples out of three, which have been previously controlled using Lattice type Probabilistic Neural Network (LPNN) and Block Pulse Functions (BPFs), are taken from prior works in order to compare the efficiency of the current method. In the present study, a maximum allowable value of control force is added to the original problem. Later, a twenty-story shear building, as the third and more realistic example, is considered and controlled. Besides, the required Central Processing Unit (CPU) time of CPSO control algorithm is investigated. Although the CPU time of LPNN and BPFs methods of prior works is not available, the results show that a full state measurement is necessary, especially when there are more than three control devices. The results show that CPSO algorithm has a good performance, especially in the presence of the cut-off limit of tendon force; therefore, can widely be used in the field of optimum active control of actual buildings.

A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model (Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발)

  • Kim, Jang Gyeong;Kwon, Hyun Han;Kim, Dong Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제34권3호
    • /
    • pp.821-831
    • /
    • 2014
  • Stochastic rainfall generators or stochastic simulation have been widely employed to generate synthetic rainfall sequences which can be used in hydrologic models as inputs. The calibration of Poisson cluster stochastic rainfall generator (e.g. Modified Bartlett-Lewis Rectangular Pulse, MBLRP) is seriously affected by local minima that is usually estimated from the local optimization algorithm. In this regard, global optimization techniques such as particle swarm optimization and shuffled complex evolution algorithm have been proposed to better estimate the parameters. Although the global search algorithm is designed to avoid the local minima, reliable parameter estimation of MBLRP model is not always feasible especially in a limited parameter space. In addition, uncertainty associated with parameters in the MBLRP rainfall generator has not been properly addressed yet. In this sense, this study aims to develop and test a Bayesian model based parameter estimation method for the MBLRP rainfall generator that allow us to derive the posterior distribution of the model parameters. It was found that the HBM based MBLRP model showed better performance in terms of reproducing rainfall statistic and underlying distribution of hourly rainfall series.

Optimization of a horizontal axis marine current turbine via surrogate models

  • Thandayutham, Karthikeyan;Avital, E.J.;Venkatesan, Nithya;Samad, Abdus
    • Ocean Systems Engineering
    • /
    • 제9권2호
    • /
    • pp.111-133
    • /
    • 2019
  • Flow through a scaled horizontal axis marine current turbine was numerically simulated after validation and the turbine design was optimized. The computational fluid dynamics (CFD) code Ansys-CFX 16.1 for numerical modeling, an in-house blade element momentum (BEM) code for analytical modeling and an in-house surrogate-based optimization (SBO) code were used to find an optimal turbine design. The blade-pitch angle (${\theta}$) and the number of rotor blades (NR) were taken as design variables. A single objective optimization approach was utilized in the present work. The defined objective function was the turbine's power coefficient ($C_P$). A $3{\times}3$ full-factorial sampling technique was used to define the sample space. This sampling technique gave different turbine designs, which were further evaluated for the objective function by solving the Reynolds-Averaged Navier-Stokes equations (RANS). Finally, the SBO technique with search algorithm produced an optimal design. It is found that the optimal design has improved the objective function by 26.5%. This article presents the solution approach, analysis of the turbine flow field and the predictability of various surrogate based techniques.