• Title/Summary/Keyword: space search optimization algorithm

Search Result 167, Processing Time 0.02 seconds

Minimum-Energy Spacecraft Intercept on Non-coplanar Elliptical Orbits Using Genetic Algorithms

  • Oghim, Snyoll;Lee, Chang-Yull;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.729-739
    • /
    • 2017
  • The objective of this study was to optimize minimum-energy impulsive spacecraft intercept using genetic algorithms. A mathematical model was established on two-body system based on f and g solution and universal variable to address spacecraft intercept problem for non-coplanar elliptical orbits. This nonlinear problem includes many local optima due to discontinuity and strong nonlinearity. In addition, since it does not provide a closed-form solution, it must be solved using a numerical method. Therefore, the initial guess is that a very sensitive factor is needed to obtain globally optimal values. Genetic algorithms are effective for solving these kinds of optimization problems due to inherent properties of random search algorithms. The main goal of this paper was to find minimum energy solution for orbit transfer problem. The numerical solution using initial values evaluated by the genetic algorithm matched with results of Hohmann transfer. Such optimal solution for unrestricted arbitrary elliptic orbits using universal variables provides flexibility to solve orbit transfer problems.

A Genetic Algorithm Based Learning Path Optimization for Music Education (유전 알고리즘 기반의 음악 교육 학습 경로 최적화)

  • Jung, Woosung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.13-20
    • /
    • 2019
  • For customized education, it is essential to search the learning path for the learner. The genetic algorithm makes it possible to find optimal solutions within a practical time when they are difficult to be obtained with deterministic approaches because of the problem's very large search space. In this research, based on genetic algorithm, the learning paths to learn 200 chords in 27 music sheets were optimized to maximize the learning effect by balancing and minimizing learner's burden and learning size for each step in the learning paths. Although the permutation size of the possible learning path for 27 learning contents is more than $10^{28}$, the optimal solution could be obtained within 20 minutes in average by an implemented tool in this research. Experimental results showed that genetic algorithm can be effectively used to design complex learning path for customized education with various purposes. The proposed method is expected to be applied in other educational domains as well.

An Improved Coyote Optimization Algorithm-Based Clustering for Extending Network Lifetime in Wireless Sensor Networks

  • Venkatesh Sivaprakasam;Vartika Kulshrestha;Godlin Atlas Lawrence Livingston;Senthilnathan Arumugam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1873-1893
    • /
    • 2023
  • The development of lightweight, low energy and small-sized sensors incorporated with the wireless networks has brought about a phenomenal growth of Wireless Sensor Networks (WSNs) in its different fields of applications. Moreover, the routing of data is crucial in a wide number of critical applications that includes ecosystem monitoring, military and disaster management. However, the time-delay, energy imbalance and minimized network lifetime are considered as the key problems faced during the process of data transmission. Furthermore, only when the functionality of cluster head selection is available in WSNs, it is possible to improve energy and network lifetime. Besides that, the task of cluster head selection is regarded as an NP-hard optimization problem that can be effectively modelled using hybrid metaheuristic approaches. Due to this reason, an Improved Coyote Optimization Algorithm-based Clustering Technique (ICOACT) is proposed for extending the lifetime for making efficient choices for cluster heads while maintaining a consistent balance between exploitation and exploration. The issue of premature convergence and its tendency of being trapped into the local optima in the Improved Coyote Optimization Algorithm (ICOA) through the selection of center solution is used for replacing the best solution in the search space during the clustering functionality. The simulation results of the proposed ICOACT confirmed its efficiency by increasing the number of alive nodes, the total number of clusters formed with the least amount of end-to-end delay and mean packet loss rate.

An Efficient Global Optimization Method for Reducing the Wave Drag in Transonic Regime (천음속 영역의 조파항력 감소를 위한 효율적인 전역적 최적화 기법 연구)

  • Jung, Sung-Ki;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.248-254
    • /
    • 2009
  • The use of evolutionary algorithm is limited in the field of aerodynamics, mainly because the population-based search algorithm requires excessive CPU time. In this paper a coupling method with adaptive range genetic algorithm for floating point and back-propagation neural network is proposed to efficiently obtain a converged solution. As a result, it is shown that a reduction of 14% and 33% respectively in wave drag and its consumed time can be achieved by the new method.

Pallet Size Optimization for Special Cargo based on Neighborhood Search Algorithm (이웃해 탐색 알고리즘 기반의 특수화물 팔레트 크기 최적화)

  • Hyeon-Soo Shin;Chang-Hyeon Kim;Chang-Wan Ha;Hwan-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.250-251
    • /
    • 2023
  • The pallet, typically a form of tertiary packaging, is a flat structure used as a base for the unitization of goods in the supply chain. In addition, standard pallets such as T-11 and T-12 are used throughout the logistics industry to reduce the cost and enhance the efficiency of transportation. However, in the case of special cargo, it is impossible to handle such cargo using a standard pallet due to its size and weight, so many have developed and are now using their customized pallet. Therefore, this study suggests a pallet size optimization method to calculate the optimal pallet size, which minimizes the loss of space on a pallet. The main input features are the specifications and the storage quantity of each cargo, and the optimization method that has modified the Neighborhood Search Algorithm calculates the optimal pallet size. In order to verify the optimality of the developed algorithm, a comparative analysis has been conducted through simulation.

  • PDF

Shape Design of Micro Electrostatic Actuator using Multidimensional Design Windows (다차원 설계윈도우 탐색법을 이용한 마이크로 액추에이터 형상설계)

  • Jeong, Min-Jung;Kim, Yeong-Jin;Daisuke Ishihara;Yoshimura, Shinobu;Yagawa, Genki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1796-1801
    • /
    • 2001
  • For micro-machines, very few design methodologies based on optimization hale been developed so far. To overcome the difficulties of design optimization of micro-machines, the search method for multi-dimensional design window (DW)s is proposed. The proposed method is defined as areas of satisfactory design solutions in a design parameter space, using both continuous evolutionary algorithms (CEA) and the modified K-means clustering algorithm . To demonstrate practical performance of the proposed method, it was applied to an optimal shape design of micro electrostatic actuator of optical memory. The shape design problem has 5 design parameters and 5 objective functions, and finally shows 4 specific design shapes and design characters based on the proposed DWs.

A study on the treatment of a max-value cost function in parametric optimization (매개변수 종속 최적화에서 최대치형 목적함수 처리에 관한 연구)

  • Kim, Min-Soo;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1561-1570
    • /
    • 1997
  • This study explores the treatment of the max-value cost function over a parameter interval in parametric optimization. To avoid the computational burden of the transformation treatment using an artificial variable, a direct treatment of the original max-value cost function is proposed. It is theoretically shown that the transformation treatment results in demanding an additional equality constraint of dual variables as a part of the Kuhn-Tucker necessary conditions. Also, it is demonstrated that the usability and feasibility conditions on the search direction of the transformation treatment retard convergence rate. To investigate numerical performances of both treatments, typical optimization algorithms in ADS are employed to solve a min-max steady-state response optimization. All the algorithm tested reveal that the suggested direct treatment is more efficient and stable than the transformation treatment. Also, the better performing of the direct treatment over the transformation treatment is clearly shown by constrasting the convergence paths in the design space of the sample problem. Six min-max transient response optimization problems are also solved by using both treatments, and the comparisons of the results confirm that the performances of the direct treatment is better than those of the tranformation treatment.

Improved Simulated-Annealing Technique for Sequence-Pair based Floorplan (Sequence-Pair 기반의 플로어플랜을 위한 개선된 Simulated-Annealing 기법)

  • Sung, Young-Tae;Hur, Sung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.28-36
    • /
    • 2009
  • Sequence-Pair(SP) model represents the topological relation between modules. In general, SP model based floorplanners search solutions using Simulated-Annealing(SA) algorithm. Several SA based floorplanning techniques using SP model have been published. To improve the performance of those techniques they tried to improve the speed for evaluation function for SP model, to find better scheduling methods and perturb functions for SA. In this paper we propose a two phase SA based algorithm. In the first phase, white space between modules is reduced by applying compaction technique to the floorplan obtained by an SP. From the compacted floorplan, the corresponding SP is determined. Solution space has been searched by changing the SP in the SA framework. When solutions converge to some threshold value, the first phase of the SA based search stops. Then using the typical SA based algorithm, ie, without using the compaction technique, the second phase of our algorithm continues to find optimal solutions. Experimental results with MCNC benchmark circuits show that how the proposed technique affects to the procedure for SA based floorplainning algorithm and that the results obtained by our technique is better than those obtained by existing SA-based algorithms.

GRASP Algorithm for Dynamic Weapon-Target Assignment Problem (동적 무장할당 문제에서의 GRASP 알고리즘 연구)

  • Park, Kuk-Kwon;Kang, Tae Young;Ryoo, Chang-Kyung;Jung, YoungRan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.856-864
    • /
    • 2019
  • The weapon-target assignment (WTA) problem is a matter of effectively allocating weapons to a number of threats. The WTA in a rapidly changing dynamic environment of engagement must take into account both of properties of the threat and the weapon and the effect of the previous decision. We propose a method of applying the Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, a kind of meta-heuristic method, to derive optimal solution for a dynamic WTA problem. Firstly, we define a dynamic WTA problem and formulate a mathematical model for applying the algorithm. For the purpose of the assignment strategy, the objective function is defined and time-varying constraints are considered. The dynamic WTA problem is then solved by applying the GRASP algorithm. The optimal solution characteristics of the formalized dynamic WTA problem are analyzed through the simulation, and the algorithm performance is verified via the Monte-Carlo simulation.

Simulator Development for GEO (Geostationary Orbit)-Based Launch Vehicle Flight Trajectory Prediction System (정지궤도 기반 발사체 비행 궤적 추정시스템의 시뮬레이터 개발)

  • Myung, Hwan-Chun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.67-80
    • /
    • 2022
  • The missile early-warning satellite systems have been developed and upgraded by some space-developed nations, under the inevitable trend that the space is more strongly considered as another battle field than before. As the key function of such a satellite-based early warning system, the prediction algorithm of the missile flight trajectory is studied in the paper. In particular, the evolution computation, receiving broad attention in the artificial intelligence area, is applied to the proposed prediction method so that the global optimum-like solution is found avoiding disadvantage of the previous non-linear optimization search tools. Moreover, using the prediction simulator of the launch vehicle flight trajectory which is newly developed in C# and Python, the paper verifies the performance and the feature of the proposed algorithm.