• Title/Summary/Keyword: space search optimization algorithm

Search Result 167, Processing Time 0.028 seconds

Particle Swarm Optimization for Snowplow Route Allocation and Location of Snow Control Material Storage (Particle Swarm Optimization을 이용한 제설차량 작업구간 할당 및 제설전진기지 위치 최적화)

  • Park, U-Yeol;Kim, Geun-Young;Kim, Sun-Young;Kim, Hee-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.369-375
    • /
    • 2017
  • This study suggests PSO(Particle Swarm Optimization) algorithm that optimizes the snowplow route allocation and the location of the snow control material storage to improve the efficiency in snow removal works. The modified PSO algorithm for improving the search capacity is proposed, and this study suggests the solution representation, the parameter setting, and the fitness function for the given optimization problems. Computational experiments in real-world case are carried out to justify the proposed method and compared with the traditional PSO algorithms. The results show that the proposed algorithms can find the better solution than the traditional PSO algorithms by searching for the wider solution space without falling into the local optima. The finding of this study is efficiently employed to solve the optimization of the snowplow route allocation by minimizing the workload of each snowplow to search the location of the snow control material storage as well.

Sexual Reproduction Genetic Algorithms: The Effects of Multi-Selection & Diploidy on Search Performances (유성생식 유전알고리즘 : 다중선택과 이배성이 탐색성능에 미치는 영향)

  • Ryu, K.B.;Choi, Y.J.;Kim, C.E.;Lee, H.S.;Jung, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.1006-1010
    • /
    • 1995
  • This paper describes Sexual Reproduction Genetic Algorithm(SRGA) for function optimization. In SRGA, each individual utilize a diploid chromosome structure. Sex cells(gametes) are produced through artificial meiosis in which crossover and mutation occur. The proposed method has two selection operators, one, individual selection which selects the individual to fertilize, and the other, gamete selection which makes zygote for offspring production. We consider the effects of multi-selection and diploidy on search performance. SRGA improves local and global search(exploitation and exploration) and show optimum tracking performance in nonstationary environments. Gray coding is incorporated to transforming the search space and Genic uniform distribution method is proposed to alleviate the problem of premature convergence.

  • PDF

Concrete Optimum Mixture Proportioning Based on a Database Using Convex Hulls (최소 볼록 집합을 이용한 데이터베이스 기반 콘크리트 최적 배합)

  • Lee, Bang-Yeon;Kim, Jae-Hong;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.627-634
    • /
    • 2008
  • This paper presents an optimum mixture design method for proportioning a concrete. In the proposed method, the search space is constrained as the domain defined by the minimal convex region of a database, instead of the available range of each component and the ratio composed of several components. The model for defining the search space which is expressed by the effective region is proposed. The effective region model evaluates whether a mix-proportion is effective on processing for optimization, yielding highly reliable results. Three concepts are adopted to realize the proposed methodology: A genetic algorithm for the optimization; an artificial neural network for predicting material properties; and a convex hull for evaluating the effective region. And then, it was applied to an optimization problem wherein the minimum cost should be obtained under a given strength requirement. Experimental test results show that the mix-proportion obtained from the proposed methodology using convex hulls is found to be more accurate and feasible than that obtained from a general optimum technique that does not consider this aspect.

Shape Optimization of Axial Flow Fan Blade Using Surrogate Model (대리모델을 사용한 축류송풍기 블레이드의 형상 최적화)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2440-2443
    • /
    • 2008
  • This paper presents a three dimensional shape optimization procedure for a low-speed axial flow fan blade with a weighted average surrogate model. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations. Six variables from airfoil profile and lean are selected as design variables. 3D RANS solver is used to evaluate the objective functions of total pressure efficiency. Surrogate approximation models for optimization have been employed to find the optimal design of fan blade. A search algorithm is used to find the optimal design in the design space from the constructed surrogate models for the objective function. The total pressure efficiency is increased by 0.31% with the weighted average surrogate model.

  • PDF

Inversion of Acoustical Properties of Sedimentary Layers from Chirp Sonar Signals (Chirp 신호를 이용한 해저퇴적층의 음향학적 특성 역산)

  • 박철수;성우제
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.32-41
    • /
    • 1999
  • In this paper, an inversion method using chirp signals and two near field receivers is proposed. Inversion problems can be formulated into the probabilistic models composed of signals, a forward model and noise. Forward model to simulate chirp signals is chosen to be the source-wavelet-convolution planewave modeling method. The solution of the inversion problem is defined by a posteriori pdf. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the ranges for a priori uniform distribution is based. The genetic algorithm can be applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L₂norm of the difference between measured and modeled signals. The observed signals can be separated into a set of two signals reflected from the upper and lower boundaries of a sediment. The separation of signals and successive applications of the genetic algorithm optimization process reduce the search space, therefore improving the inversion results. Not only the marginal pdf but also the statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm. The examples applied here show that, for synthetic data with noise, it is possible to carry out an inversion for sedimentary layers using the proposed inversion method.

  • PDF

Optimal Design of the Stacking Sequence on a Composite Fan Blade Using Lamination Parameter (적층 파라미터를 활용한 복합재 팬 블레이드의 적층 패턴 최적설계)

  • Sung, Yoonju;Jun, Yongun;Park, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.411-418
    • /
    • 2020
  • In this paper, approximation and optimization methods are proposed for the structural performance of the composite fan blade. Using these methods, we perform the optimal design of the stacking sequence to maximize stiffnesses without changing the mass and the geometric shape of the composite fan blade. In this study, the lamination parameters are introduced to reduce the design variables and space. From the characteristics of lamination parameters, we generate response surface model having a high fitness value. Considering the requirements of the optimal stacking sequence, the multi-objective optimization problem is formulated. We apply the two-step optimization method that combines gradient-based method and genetic algorithm for efficient search of an optimal solution. Finally, the finite element analysis results of the initial and the optimized model are compared to validate the approximation and optimization methods based on the lamination parameters.

Design Transformation for the Optimization of Pipelined Systems (파이프라인 시스템의 최적화를 위한 설계변환)

  • 권성훈;김충희;신현철
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.3
    • /
    • pp.1-7
    • /
    • 1999
  • In this research, transformation-based optimization techniques for pipelined designs have been developed. The transformation-based optimization techniques include pipelined architecture transformations and retiming transformations. The new transformation method has the following three features. First, the overall performance of a pipelined system is optimized owing to various transformations including retiming of multiple pipelined blocks. Second, these techniques can be used to search a large solution space by allowing efficient exploration of trade-offs between area and performance. Third, these techniques can be easily extended to a new transformation or algorithm and can be used to optimize memory or bus architectures. Experimental results illustrate that these transformation-based optimization techniques improve area by 21% and performance by 17% on the average for a set of pipelined designs. Especially, the techniques are useful to efficiently explore a large design space.

  • PDF

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

Sensor placement optimization in structural health monitoring using distributed monkey algorithm

  • Yi, Ting-Hua;Li, Hong-Nan;Zhang, Xu-Dong
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.191-207
    • /
    • 2015
  • Proper placement of sensors plays a key role in construction and implementation of an effective structural health monitoring (SHM) system. This paper proposes a novel methodology called the distributed monkey algorithm (DMA) for the optimum design of SHM system sensor arrays. Different from the existing algorithms, the dual-structure coding method is adopted for the representation of design variables and the single large population is partitioned into subsets and each subpopulation searches the space in different directions separately, leading to quicker convergence and higher searching capability. After the personal areas of all subpopulations have been finished, the initial optimal solutions in every subpopulation are extracted and reordered into a new subpopulation, and the harmony search algorithm (HSA) is incorporated to find the final optimal solution. A computational case of a high-rise building has been implemented to demonstrate the effectiveness of the proposed method. Investigations have clearly suggested that the proposed DMA is simple in concept, few in parameters, easy in implementation, and could generate sensor configurations superior to other conventional algorithms both in terms of generating optimal solutions as well as faster convergence.

A Hierarchical Packet Classification Algorithm Using Set-Pruning Binary Search Tree (셋-프루닝 이진 검색 트리를 이용한 계층적 패킷 분류 알고리즘)

  • Lee, Soo-Hyun;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.482-496
    • /
    • 2008
  • Packet classification in the Internet routers requires multi-dimensional search for multiple header fields for every incoming packet in wire-speed, hence packet classification is one of the most important challenges in router design. Hierarchical packet classification is one of the most effective solutions since search space is remarkably reduced every time a field search is completed. However, hierarchical structures have two intrinsic issues; back-tracking and empty internal nodes. In this paper, we propose a new hierarchical packet classification algorithm which solves both problems. The back-tracking is avoided by using the set-pruning and the empty internal nodes are avoided by applying the binary search tree. Simulation result shows that the proposed algorithm provides significant improvement in search speed without increasing the amount of memory requirement. We also propose an optimization technique applying controlled rule copy in set-pruning.