• Title/Summary/Keyword: space requirement

Search Result 552, Processing Time 0.028 seconds

Development of Vehicle Emission Model with a High Resolution in Time and Space (${\cdot}$공간적 고해상도 자동차 배출량 모형의 개발)

  • Park, Seong-Kyu;Kim, Shin-Do;Park, Ki-Hark
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.293-299
    • /
    • 2004
  • Traffic represents one of the largest sources of primary air pollutants in urban area. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentration of pollutants. A characteristics of most of the these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emission inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for vehicle types. The majority of inventories are compiled using passive data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. The study of current trends is towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this study, a model of vehicle emission calculation by using real-time traffic data was studied. Traffic data, which are required on a street-by-street basis, is obtained from induction loops of traffic control system. It is possible that characteristics of hourly air pollutants emission rates is obtained from hourly traffic volume and speed. An emission rates model is allocated with a high resolution space by using geographic information system (GIS). Vehicle emission model was developed with a high resolution spatial, gridded and hourly emission rates.

Research on the Actual State of Facilities and Behavior of the Sanitary zones in Collective and Detached Houses in Jeju City (제주시 공동주택과 단독주택에서 생리ㆍ위생공간의 설비ㆍ기구 실태 및 행태에 관한 연구)

  • Kim Bong-Ae;Lee Jeong-Lim
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.9
    • /
    • pp.99-109
    • /
    • 2004
  • In residential spaces, sanitary zones are where the most basic needs of human beings are met and are used by all members of the family. A high level of privacy is therefore required in their use. This research studies the current state of sanitary zones in collective houses and in detached houses from a comparative perspective first, and then analyses the satisfaction and dissatisfaction requirement levels of dwellers of each house in comparison so as to provide data to formulate a new design for sanitary zones that is suitable for each dwelling house. The results of this research are as follows. (1) The questionnaire respondents were mostly in their 30s and 40s (99.1% in total), and lived in a nuclear family system (87.7%). (2) The number of sanitary zones was found to be more than 2 in 62% of collective houses and in 60.7% of detached houses, which leads us to conclude that non-dwelling spaces are increasing in both types of houses. (3) Of the housing facilities,13% of collective houses and 9% of detached houses were equipped with a bidet. Both percentages are very low but it needs to be noted that the percentage is relatively high in collective houses. In safety facilities, the ratio of houses furnished with safety handlers for the aged was very low in both types of houses. (4) The residents of collective houses showed high levels of dissatisfaction with regard to the problems of storage space and steam production, while residents of detached houses expressed high levels of dissatisfaction with regard to the heating system, colors of finishing materials, size, dampness, steam production, and storage space.

STCDD Cooperative Transmission Scheme for Improvement of Reliability in OFDM Based UWB System (OFDM 기반 UWB 시스템의 신뢰도 향상을 위한 STCDD 협력 전송 기법)

  • Song, Hyoung-Kyu;Song, Jin-Hyuk;Yoon, Jae-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.547-554
    • /
    • 2010
  • Recently, the multi-band orthogonal frequency division multiplexing(MB-OFDM) system, one of UWB system, can satisfy the requirement and can be applied to various wireless communication services because ultra-wideband(UWB) is a wireless communication technique that supports high data rate with low power. In this paper, the method applying Alamouti's space time block code(STBC) and cyclic delay diversity(CDD) is proposed. The proposed method can be easily applied with arbitrary number of relays and only needs two time slots of quasi stationary assumption. And it is applied to the MB-OFDM system. Second, an optimal relaying scheme based on decode-and-forward(DF) method is proposed which is provides good error performance compared to conventional schemes.

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.

Design and Performance Analysis of Propeller for Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3의 프로펠러 설계 및 성능해석)

  • Park, Donghun;Hwang, Seungjae;Kim, Sanggon;Kim, Cheolwan;Lee, Yunggyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.759-768
    • /
    • 2016
  • Design and performance analysis of propeller for solar-powered HALE UAV, EAV-3 are conducted. Experiment points of design variables are obtained by using Design of Experiment(DOE) and Kriging meta-model is generated for objective and constraints function. The geometry of propeller is designed by evaluating the response surface with requirement and restrictions. The validity of the design is verified by meta-model based optimization. Computational analyses are carried out by using commercial CFD code and the results are compared with those from a design code and wind tunnel test. The results showed good agreement with predictions of the design code at the design altitude. Also, it is confirmed that the blockage effect due to the measurement device and support strut is included in the test data and the results including this effect compare well with the test data.

Development of a Data Bus Analyzer for Avionics Interfaces of Various Types (다종 항공전자 인터페이스를 위한 데이터 버스 분석 장비 개발)

  • Kim, Min-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.825-832
    • /
    • 2016
  • This paper describes the development of a data bus analyzer for use in avionics systems integration test. The data bus analyzer is equipped with MIL-STD-1553B, CAN and Ethernet interface cards which is incorporated in a majority of the avionics systems to accommodate a variety of interfaces. It has an individual hardware for a capture engine and a analyzing engine in order to perform the collection and the analysis of the bus data at the same time efficiently. It provides a data display function of the grid, 2-dimensional and 3-dimensional form to increase the data analysis efficiency. Verification of the data bus analyzer was carried out module unit testing and inter-module integration testing on the basis of the test procedures. Verification of interlocking requirement and usefulness of developed equipment was confirmed through an integration test result performed on a system integration laboratory of aircraft which is an actual testing environment.

A Study of Attitude Control and Stability Analysis Using D-Decomposition Stability Area Technique for Launch Vehicle (안정성 영역(Stability Area) 판별법을 이용한 발사체 자세제어 이득 설계 및 자세 안정성 분석)

  • Park, Yong-Kyu;Sun, Byung-Chan;Roh, Woong-Rae;Oh, Choong-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.537-544
    • /
    • 2009
  • This paper concerns analysis technique on determining of attitude control gain in the low frequency region using stability area. The stability area is defined by the D-Decomposition method, which was designed by Neimark. In this paper, it is introduced D-Decomposition method from reference paper and design attitude control gain of generic launch vehicle during first stage flight phase. For selecting PD control gain, it is considered the system parameter uncertainty about whole first-stage flight phase, represented the stability area boundary on each case. After deciding the PD control gain using stability area method, it is applied to launch vehicle linear model, and checking the stability margin requirement, frequency response characteristics.

Analysis of Flight Performance Reserve for Upper Stage of Satellite Launch Vehicles (위성발사체 상단의 비행성능여유 분석)

  • Song, Eun-Jung;Choi, Jiyoung;Cho, Sang-bum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.386-392
    • /
    • 2017
  • This paper considers the analysis of the flight performance reserve, which is required propellant to compensate various launch vehicle performance deviations, to inject the payload of a 3-staged launch vehicle to a circular sun synchronous orbit at a height of 700 km. The various error sources, which affect the orbit injection accuracy, and their uncertainty are defined first. Then the sensitivity analysis, which has the advantage that each error source effect can be investigated independently, is performed for the extreme ${\pm}3{\sigma}$ conditions of the launch vehicle performance errors. Monte carlo simulations are also conducted to compute the propellant reserve, which can consider the combined effects of each error source. Finally the obtained flight performance reserves by the two approaches are compared and it is confirmed that they show similar results.

Drought over Seoul and Its Association with Solar Cycles

  • Park, Jong-Hyeok;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI). We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which theses short periodicities (shorter than Hale period) may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.

Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.323-333
    • /
    • 2016
  • In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the $1^{st}$ lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the $1^{st}$ LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the $1^{st}$ LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the $1^{st}$ elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.