• Title/Summary/Keyword: space requirement

Search Result 551, Processing Time 0.025 seconds

A Study on loggings of flight time(Focusing on the record of instrument flight) (비행시간 산정에 관한 연구(계기비행 기록을 중심으로))

  • Hwang, Ho-Won;Noh, Yo-Sup
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.20 no.2
    • /
    • pp.253-276
    • /
    • 2005
  • A pilot logbook is an essential data for proving pilot's flight experience. the reason for maintaining this information is to fulfill the requirement for pilot certificates, manage internationally shared career placement. this study focuses on the instrument flight related items among other flight time items which are included in a pilot logbook. By comparing the way of flight time logging among Korean Aviation Law, Federal Aviation Regulation and Joint Aviation Requirements, this study concludes intensively how to define items for flight time, to amend the definition and to apply the policy in Korea with respect to the pilot logbook.

  • PDF

Design and Numerical Analysis of Swirl Generator in Internal Duct using Delta Wing with Vortex Flap (와동 플랩 삼각날개를 이용한 관내 와류 발생장치 설계 및 수치해석)

  • Kim, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.761-770
    • /
    • 2007
  • In this study, a swirl generator using delta wing was developed in order to simulate total pressure distortion and flow angle distortion. The delta wing was used for $65^{\circ}$-degree sweep back angle to satisfy the design performance for vortex core position, total pressure distortion(DC90) and swirl angle. To extend the swirling flow area, a $45^{\circ}$-degree vortex flap have applied to the delta wing. The swirl generator satisfied the design requirement of distortion coefficient in the flow distortion test to be applied to the simulation duct, and the performances of distortion for vortex core position and swirl angle using CFD(computational fluid dynamics) analysis results that was verified by flow distortion test results.

Study on spaceborne telescope structure with high stability using new composite materials (신소재 복합재료를 이용한 우주용 카메라 구조의 고안정화 설계에 관한 연구)

  • EUNG-SHIK LEE;SUN-HEE WOO
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.132-136
    • /
    • 2003
  • A Multi-Spectral Camera (MSC) is the payload of KOMPSAT-2 which is designed for earth imaging in visible and near-Infrared region on a sun-synchronous orbit. The telescope in the MSC is a Ritchey-Chretien type with large aperture. The telescope structure should be well stabilized and the optical alignment should be kept steady so that best images can be achieved. However, the MSC is exposed to adverse thermal environment on the orbit which can give impacts on optical performance. Metering structure which is exposed to adverse space environment should have tight requirement of low thermal expansion and hygroscopic stability. In order to meet those stability requirements in addition to fundamental structural ones telescope structure was designed with newly developed graphite-cyanate composite which has high tensile modulus, high thermal conductivity and low moisture absorption compared with conventional graphite-epoxy composite. In this paper, space-borne telescope structure with new composite material will be presented and fulfillment of stability requirements will be verified with designed structure.

  • PDF

The Preliminary Design Guideline for Tall Building: Exploration of Planning Factors & Building Factors

  • Choi, Yong Sun
    • Architectural research
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Every year new tall buildings are being conceived, designed, and built with new schemes. Thus it is important to explore the factors that affect tall building design. Thus it is important to explore the tall building design factors. The planning and design of tall buildings require different criteria than those that exist in regular size buildings. Tall buildings are uniquely expressed by their structural systems where exterior esthetic and requirements of space drive the form and composition of the structural systems. Therefore the exploration of design factors is the key to achieve optimum building systems. Optimization as mentioned here is associated with the efficiency of the different building systems. To achieve an optimal system, there is a need for an understanding of the factors that affect on overall tall building design such as planning module, building function, lease span, floor-to-floor-height, building height (aspect ratio), structural system, environmental systems. In this paper a statistical approach will be used and will be based on data collected from the practice through a rigorous survey taken. This information is tabulated and analyzed. The major target of investigation will be lease span related to space requirement in the tall building planning. Factors related to lease spans, such as function, floor-to-floor height, planning module, building height, overall plan dimension, and plan ratio (building geometry), will be looked at carefully. IN conclusion, this approach of optimization can introduce a preliminary design guideline for tall building projects. The purpose of the paper should shed some light on the optimum tall building design criteria.

Rendezvous Maneuver of an Unmanned Aerial Vehicle Using Lyapunov-based Variable Pursuit Guidance (르야프노프 기반 가변 추적유도법칙을 이용한 무인항공기 랑데부 기동 기법)

  • Kim, Mingu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.765-772
    • /
    • 2020
  • A lot of studies to overcome the limitation of flight time have been studied, since the requirement of complicated mission achievement of aircraft including Unmanned Aerial Vehicles(UAVs) has been increased. The fuel limitation could bring about not enough flight time to accomplish missions. For this reason, the rendezvous maneuver is required to accomplish aerial refueling missions. The rendezvous guidance law based on variable pursuit guidance is designed using Lyapunov stability theory in this study. Numerical simulation is performed to demonstrate the performance of the proposed rendezvous guidance.

A Study of Spacecraft Alignment Measurement with Theodolite (데오도라이트를 이용한 위성체 얼라인먼트 측정에 관한 연구)

  • Yun,Yong-Sik;Park,Hong-Cheol;Son,Yeong-Seon;Choe,Jong-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.105-111
    • /
    • 2003
  • A measurement of spacecraft alignment is an important process of spacecraft assembly, integration and test. Because, it is necessary that a operator of a ground station controls the precise positions of on-orbit spacecraft by using the alignment data of attitude orbit control sensors(AOCS) on spacecraft. And, an accuracy of spacecraft alignment requirement is about $0.1^{\circ}{\sim}0.7^{\circ}$. A spacecraft alignment is measured by autocollimation of theodolite. This paper describes the measurement principle and method of spacecraft alignment. The result shows that all the AOCS on the spacecraft are aligned within the tolerance required through the alignment measurement.

Study of Efficient Aerodynamic Shape Design Optimization with Uncertainties (신뢰성을 고려한 효율적인 공력 형상 최적 설계에 대한 연구)

  • 김수환;권장혁
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.18-27
    • /
    • 2006
  • The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods, therefore it is hard to apply directly to large-scaled problems such as an aerodynamic shape design optimization. In this study, to overcome this computational limitation the efficient RBDO procedure with the two-point approximation(TPA) and adjoint sensitivity analysis is proposed, that the computational requirement is nearly the same as DO and the reliability accuracy is good compared with that of RBDO. Using this, the 3-D aerodynamic shape design optimization is performed very efficiently.

Aerodynamic Drag Prediction of a Bearingless Rotor Hub (무베어링 로터 허브의 공기역학적 항력 예측)

  • Kang, Hee-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.655-661
    • /
    • 2012
  • In this study, aerodynamic drag of a bearingless rotor hub was predicted by computational fluid dynamics methodology using unstructured overset mixed meshes. The calculated results showed that the drag due to pressure forces rather than the viscous drag act as a major factor on both the fuselage and rotor hub, and the drag acting on the torque tube accounted for the largest portion in the hub drag. It was also found the hub drag accounted for 39 ~ 41% of the fuselage drag. Finally, the result confirmed the drag of the designed rotor hub satisfied the requirement of the aerodynamic hub drag by comparing with the drag trend of developed helicopter.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

The Estimation of Areal Rainfall Quantiles in Han River Basin (한강유역의 면적 확률강우량 산정에 관한 연구)

  • Kim, Gyeong-Deok;Go, Yeon-U;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2000
  • It is very important to establish sufficiently long and reliable annual maximum rainfall data in estimating areal rainfall quantiles of Han River Basin. The data from 9 gauging stations measured by Korea Meteorological Administration may meet such a requirement, however the number of these data sets is too small to estimate overall areal rainfall quantiles in large basin such as Han River Basin. In order to solve such a problem, the space correlations of many sites' data measured by Korea Ministry of Construction and Transportation and Korea Water Resources Corporation (the number of sites is 59) were used for modification of rainfall measure density. And areal rainfall quantiles according to each sub-basin were estimated based on regression analysis.

  • PDF