• Title/Summary/Keyword: space plasmas

Search Result 55, Processing Time 0.036 seconds

OPTICAL DESIGN OF THE FAR ULTRAVIOLET IMAGING SPECTROGRAPH (원자외선 영상/분광 측정기 광학설계)

  • ;;;Jerry Edelstein
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.359-371
    • /
    • 1998
  • We present the design specifications and the performance estimation of the FUVS (Far Ultraviolet Spectrograph) proposed for the observations of aurora, day/night airglow and astronomical objects on small satelltes in the spectral range of $900~1750AA$. The design of FUVS is carried out with the full consideration of optical characteristics of the grating and the aspheric substrate. Two independent methods, ray-tracing and the wave front aberration theory, are employed to estimate the performance of the optical design and it is verified that both procedures yield the resolution of $2~5AA$ in the entire spectral range. MDF (Minimum Detectable Flux) is also estimated using the known characteristics of the reflecting material and MCP, to study the feasibility of detection for faint emission lines from the hot interstellar plasmas. The results give that the observations from 1 day to 1 week, depending on the line intensity, can detect such faint emission lines from diffuse interstellar plasmas.

  • PDF

The Flow of the Interstellar Plasmas surrounding the Heliopause estimated via IBEX-Lo Observations

  • Park, Jeewoo;Kucharek, Harald;Isenberg, Philip A.;Paschalidis, Nikolaos
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.51.3-52
    • /
    • 2018
  • Since Voyager 1 passed the Heliopause in 2012, it has provided the observations of the charged particles in the local interstellar medium. However, Voyager 1 only provides the information along with its trajectory. In order to understand the global view of the interstellar plasma flow surrounding the Heliopause, we need another tool. When the interstellar plasmas approach the Heliopause, the ions are deflected around the Heliopause due to the draping of the interstellar magnetic field. The draping of the interstellar magnetic field is strongly connected with the shape of the Heliopause. A fraction of the diverted ions exchanges their charges with the undisturbed primary interstellar neutral atoms, and then the ions become neutral atoms called the secondary interstellar neutral atoms. The newly created neutral atoms carry information on the diverted flow of the interstellar ions, and a fraction of them can travel to the Sun. Therefore, the secondary component of the interstellar neutrals is an excellent diagnostic tool to provide important information to constrain the shape of the Heliopause. The secondary interstellar neutrals are observed by Interstellar Boundary Explorer (IBEX) at Earth's orbit. Since 2009, two energetic neutral atom cameras on IBEX have measured neutral atoms and it has provided sky maps of neutral atoms. In this presentation, we will discuss the directional distribution of the secondary interstellar neutrals at Earth's orbit. In the sky maps, the primary interstellar neutral gas is seen between $200^{\circ}$ and $260^{\circ}$ in ecliptic longitude and the secondary components are seen in the longitude range of $160^{\circ}-200^{\circ}$. We also present a simplified model of the outer heliosheath to help interpret the observations of interstellar neutrals by the IBEX-Lo instruments. We extract information on the large-scale shape of the Heliopause by comparing the neutral flux measured at IBEX along four different look directions with simple models of deflected plasma flow around hypothetical obstacles of different aspect ratios to the flow. Our comparisons between the model results and the observations indicate that the Heliopause is very blunt in the vicinity of the Heliospheric nose, especially compared to a Rankine half-body or cometary shape.

  • PDF

Nonlinear evolution of Alfven waves via mode conversion

  • Kim, Kyung-Im;Lee, Dong-Hun;Ryu, Dongsu;Kim, Khan-Hyuk;Lee, Ensang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.119.1-119.1
    • /
    • 2012
  • It is well known that the FLRs are excited by compressional waves via mode conversion, but there has been no apparent criterion on the maximum amplitude in the regime of linear approximations. Such limited range of amplitude should be understood by including nonlinear saturation of FLRs, which has not been examined until now. In this study, using a three-dimensional magnetohydrodynamic (MHD) simulation code, we examine the evolution of nonlinear field line resonances (FLRs) in the cold plasmas. The MHD code used in this study allows a full nonlinear description and enables us to study the maximum amplitude of FLRs. When the disturbance is sufficiently small, it is shown that linear properties of MHD wave coupling are well reproduced. In order to examine a nonlinear excitation of FLRs, it is shown how these FLRs become saturated as the initial magnitude of disturbances is assumed to increase. Our results suggest that the maximum amplitude of FLRs become saturated at the level of the same order of dB/B as in observations roughly satisfies the order of ~0.01. In addition, we extended this study for the plasma sheet boundary layer (PSBL) region. We can discuss the maximum disturbances of the Alfven via mode conversion becomes differently saturated through each region.

  • PDF

PLASMA BLOB EVENTS OBSERVED BY KOMPSAT-1 AND DMSP F15 IN THE LOW LATITUDE NIGHTTIME UPPER IONOSPHERE

  • 박재흥;이재진;이은상;민경욱
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.81-81
    • /
    • 2003
  • We report the plasma blob events that were observed from KOMPSAT-1 (2250 LT, 685-km altitude) and from DMSP F15 (2130 LT,840-km altitude) in the low-latitude ionosphere. The global distribution of blobs showed a season-longitudinal dependence similar to the distribution of the equatorial plasma bubbles, although they were observed along the ${\pm}$15 dip latitudes. The blobs drifted upward relative to the ambient plasmas, and the electron temperatures and H+ proportions were lower within the blobs compared to those in the background. These characteristics of the plasma blobs are very similar to the characteristics of the equatorial plasma bubbles. Then, we suggest that the blobs were originated from the lower altitudes by the mechanism that drives an upward drift of the plasma bubbles. The blob events did not occur in a correlated way with the magnetic activity or daily variation of the solar activity.

  • PDF

Large Solar Eruptive Events

  • Lin, R.P.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • Major solar eruptive events, consisting of both a large flare and a near simultaneous fast coronal mass ejection (CME), are the most powerful explosions in the solar system, releasing $10^{32}-10^{33}$ ergs in ${\sim}10^{3-4}\;s$. They are also the most powerful and energetic particle accelerators, producing ions up to tens of GeV and electrons up to hundreds of MeV. For flares, the accelerated particles often contain up to ~50% of the total energy released, a remarkable efficiency that indicates the particle acceleration is intimately related to the energy release process. Similar transient energy release/particle acceleration processes appear to occur elsewhere in the universe, in stellar flares, magnetars, etc. Escaping solar energetic particles (SEPs) appear to be accelerated by the shock wave driven by the fast CME at altitudes of ~1 40 $R_s$, with an efficiency of ~10%, about what is required for supernova shock waves to produce galactic cosmic rays. Thus, large solar eruptive events are our most accessible laboratory for understanding the fundamental physics of transient energy release and particle acceleration in cosmic magnetized plasmas. They also produce the most extreme space weather - the escaping SEPs are a major radiation hazard for spacecraft and humans in space, the intense flare photon emissions disrupt GPS and communications on the Earth, while the fast CME restructures the interplanetary medium with severe effects on the magnetospheres and atmospheres of the Earth and other planets. Here I review present observations of large solar eruptive events, and future space and ground-based measurements needed to understand the fundamental processes involved.

  • PDF

Three-Dimensional Magnetohydrodynamic Simulations of Nonlinear Field Line Resonances

  • Kim, Kyung-Im;Lee, Dong-Hun;Ryu, Dong-Su
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • Field line resonances (FLRs) observed in the magnetosphere often have the amplitude of a few nT, which indicates that dB/B roughly satisfies ~0.01. It is well known that the FLRs are excited by compressional waves via mode conversion, but there has been no apparent criterion on the maximum amplitude in the regime of linear approximations. Such limited range of amplitude should be understood by including nonlinear saturation of FLRs, which has not been examined until now. In this study, using a three-dimensional magnetohydrodynamic (MHD) simulation code, we examine the evolution of nonlinear field line resonances (FLRs) in the cold plasmas. The MHD code used in this study allows a full nonlinear description and enables us to study the maximum amplitude of FLRs. When the disturbance is sufficiently small, it is shown that linear properties of MHD wave coupling are well reproduced. In order to examine a nonlinear excitation of FLRs, it is shown how these FLRs become saturated as the initial magnitude of disturbances is assumed to increase. Our results suggest that the maximum amplitude of FLRs become saturated at the level of the same order of dB/B as in observations. In addition, we discuss the role of both linear terms and nonlinear terms in the MHD wave equations.

  • PDF

300-W-class Side-pumped Solar Laser

  • Qi, Hongfei;Lan, Lanling;Liu, Yan;Xiang, Pengfei;Tang, Yulong
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.627-633
    • /
    • 2022
  • To realize uniform side pumping of solar lasers and improve their output power, a solar concentrating system based on off-axis parabolic mirrors is proposed. Four identical off-axis parabolic mirrors with focal length of 1,000 mm are toroidally arranged as the primary concentrator. Four two-dimensional compound parabolic concentrators (2D-CPCs) are designed as a secondary concentrator to further compress the focused spot induced by the parabolic mirrors, and the focused light is then homogenized by four rectangular diffusers and provides uniform pumping for a laser-crystal rod to achieve solar laser emission. Simulation results show that the solar power received by the laser rod, uniformity of the light spot, and output power of the solar laser are 7,872.7 W, 98%, and 351.8 W respectively. This uniform pumping configuration and concentrator design thus provide a new means for developing high-power side-pumped solid-state solar lasers.

A Study on the Characteristics of High Pressure DC Glow Discharge with a Narrow Gap (좁은 간격의 고압 DC 글로우 방전에서의 방전물성에 관한 연구)

  • Park, Jae-Seong;Jeong, Heui-Seob;Shin, Buhm-Jae;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.435-437
    • /
    • 1995
  • It is important to understand tile behaviours of tile high pressure DC glow discharge with a micro gap inside a pixel of the plasmas display panel. We prepared a narrow gap discharge system and have measured electron temperature and density by means of double probe methods in high pressure which was between 100torr and 200torr. And the electrode gap was 7mm. When the pressure varied from 100torr to 200torr, the negative glow was created at a distance less than 1mm from the cathode. And the length of the faraday dark space decreased from 8mm to 5mm. Hence probe measurements was mainly, performed in the region of the Faraday dark space. The dependence of electron temperature and density on the pressure and current density was same with that of the general flow discharge, i.e. as the pressure increased the electron temperature decreased and the density increased. But the spatial electron density distribution in the Faraday dark space was highly distorted because of the effect of high pressure.

  • PDF

INVERSE ENERGY CASCADE AND IMBALANCED ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE

  • Kim, Hoonkyu;Cho, Junhyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.60.2-60.2
    • /
    • 2013
  • Electron magnetohydrodynamic (EMHD) turbulence provides a fluid-like description of small-scale magnetized plasmas. Most EMHD turbulence studies consider "balanced" EMHD turbulence. However, imbalanced EMHD turbulence has never been studied. In this study, we numerically study "imbalanced" EMHD turbulence. Imbalanced turbulence means that wave packets moving in one direction have high amplitudes or strong perturbations than the others. In driven imbalanced EMHD turbulence, non-zero magnetic helicity is injected. When magnetic helicity is injected at a scale, we expect to have inverse cascade of magnetic helicity, as well as magnetic energy, in three-dimensional (3D) EMHD turbulence. For no helicity injection, we do not observe inverse energy cascade. However, when magnetic helicity is injected, inverse cascade of magnetic helicity is clearly observed. Magnetic energy also shows inverse cascade. In EMHD turbulence, it is well known that magnetic energy on scales smaller than the energy injection scale is forward-cascading quantity and the magnetic energy spectrum follows a k^{-7/3} one. On the other hand, the inverse-cascading entity on scales larger than the energy injection scale is uncertain. If the magnetic helicity is inverse-cascading quantity, we will obtain a k^{-5/3} magnetic energy spectrum. In our simulations, we do observe energy spectrum consistant with k^{-5/3} on large scales. Therefore, we confirm that magnetic helicity indeed is the inverse-cascading entity in 3D EMHD turbulence.

  • PDF

Three Dimensional Computer Modeling of Magnetospheric Substorm

  • Min, Kyoung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 1989
  • Magnetospheic substorm in the magnetotail region is studied numerically by means of a three dimensional MHD code. The analytic solution for the quiet magnetotail is employed as an initial configuration. The localized solar wind is modeled to enter the simulation domain through the boundaries located in the magnetotail lobe region. As a result of the interaction between the solar wind and the magnetosphere, the magnetic field lines are stretched, and the plasma sheet becomes thinner and thinner. When the current driven resistivity is generated, magnetic reconnection is triggered by this resistivity. The resulting plasma jetting is found to be super-magnetosonic. Although the plasmoid formation and its tailward motion is not quite clear as in the two dimensional simulation, which is mainly because of the numerical model chosen for the present simulation, the rarification of the plasmas near the x-point is observed. Field aligned currents are observed in the late expansive stage of the magnetospheric substorm. These field aligned currents flow from the tail toward the ionosphere on the dawn side from the ionosphere to ward the tail on the dusk side, namely in the same sense of the region 1 current. As the field aligned currents develop, it is found that the cross tail current in the earth side midnight section of the magnetic x-point is reduced.

  • PDF