• Title/Summary/Keyword: space plane

Search Result 1,312, Processing Time 0.029 seconds

Extragalactic Sciences from SPICA/FPC-S

  • Jeong, Woong-Seob;Matsumoto, Toshio;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Tsumura, Kohji;Tanaka, Masayuki;Shimonishi, Takashi;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Sung-Joon;Moon, Bongkon;Park, Kwijong;Park, Youngsik;Han, Wonyong;Nam, Ukwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2013
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. The focal plane instruments onboard SPICA will enable us to resolve many astronomical key issues from the formation and evolution of galaxies to the planetary formation. The FPC-S (Focal Plane Camera - Sciecne) is a near-infrared instrument proposed by Korea as an international collaboration. Owing to the capability of both low-resolution imaging spectroscopy and wide-band imaging with a field of view of $5^{\prime}{\times}5^{\prime}$, it has large throughput as well as high sensitivity for diffuse light compared with JWST. In order to strengthen advantages of the FPC-S, we propose the studies of probing population III stars by the measurement of cosmic near-infrared background radiation and the star formation history at high redshift by the discoveries of active star-forming galaxies. In addition to the major scientific targets, to survey large area opens a new parameter space to investigate the deep Universe. The good survey capability in the parallel imaging mode allows us to study the rare, bright objects such as quasars, bright star-forming galaxies in the early Universe as a way to understand the formation of the first objects in the Universe, and ultra-cool brown dwarfs. Observations in the warm mission will give us a unique chance to detect high-z supernovae, ices in young stellar objects (YSOs) even with low mass, the $3.3{\mu}$ feature of shocked circumstance in supernova remnants. Here, we report the current status of SPICA/FPC project and its extragalactic sciences.

  • PDF

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

SHAPING A NOZZLE WITH A CENTRAL BODY (스파이크 노즐 설계)

  • KIM C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Singhal, Abhinav;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.265-276
    • /
    • 2020
  • A study that primarily focuses on nonlocal strain gradient plate model for the sole purpose of vibration examination, for graphene sheets under linearly variable in-plane mechanical loads. To study a better or more precise examination on graphene sheets, a new advance model was conducted which carries two scale parameters that happen to be related to the nonlocal as well as the strain gradient influences. Through the usage of two-variable shear deformation plate approach, that does not require the inclusion of shear correction factors, the graphene sheet is designed. Based on Hamilton's principle, fundamental expressions in regard to a nonlocal strain gradient graphene sheet on elastic half-space is originated. A Galerkin's technique is applied to resolve the fundamental expressions for distinct boundary conditions. Influence of distinct factors which can be in-plane loading, length scale parameter, load factor, elastic foundation, boundary conditions, and nonlocal parameter on vibration properties of the graphene sheets then undergo investigation.

Anisotropic Version of Mohr-Coulomb Failure Criterion for Transversely Isotropic Rock (횡등방성 암석의 강도해석을 위한 이방성 Mohr-Coulomb 파괴조건식)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.174-180
    • /
    • 2011
  • An anisotropic version of Mohr-Coulomb failure criterion is proposed in order to provide a strength criterion for transversely isotropic rock. The concept of fabric tensor introduced by Pietruszczak & Mroz (2001) is employed to define the friction angle and cohesion as scalar functions of the fabric tensors. The anisotroy in these two strength parameters are calculated in association with the consideration of the relative rotation between the principal stress coordinate and the principal material triad. The critical plane on which the anisotropic function maximized is found by an optimization technique based on the Lagrange multiplier method. To demonstrate the performance of the anisotropic failure criterion, conventional triaxial tests on the samples having various inclinations of weakness plane are simulated and the resulting triaxial strength and dip angle of failure plane are discussed.

Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method (SB발파에서 파단면 제어의 고도화에 관한 연구)

  • Cho, Sang-Ho;Jeong, Yun-Young;Kim, Kwang-Yum;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • Recently, in order to achieve smooth fracture plane and minimize the excavation damage zone in rock blasting, controlled blasting methods which utilize new technologies such as electronic delay detonator (EDD) and a notched charge hole have been suggested. In this study, smooth blastings utilizing three wing type notched charge holes are simulated to investigate the influence of explosive initial density on the resultant fracture plane and damage zone using dynamic fracture process analysis (DFPA) code. Finally, based on the dynamic fracture process analyses, novel smooth blasting method, ED-Notch SB (Electronic Detonator Notched Charge Hole Smooth Blasting) is suggested.

A Study on Spacial Characterristics of MVRDV's Architecture (MVRDV의 건축에 나타난 공간 구성 수법에 관한 연구)

  • Cho, Young-Bae
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.1
    • /
    • pp.77-83
    • /
    • 2008
  • MVRDV is most important architect as created interesting architectural space in contemporary architecture, and so they applies to the unique theory in their architecture. They used to architectural diagram, program, datascape, density as a design tool. Especially, they have create new architectural space and form in using architectural diagram, program, datascape, density, and void. So, this study is purposed to explain how they use as architectural tool to make composition of it's architectural space and is purpose to explain what is their main concept in architectural space. MVRDV's architectural space has fundamental methodology. That is Datascape on uncertainty and continuity between urban space and architectural space. The former consist in using diagram and architectural program and the latter consist in operating architectural void and inner continuity surface. The conclusion is follows 1. The mode of spacial composition by architectural void is correspond density of city as MVRDV's architectural thinking. 2. The mode of spacial composition by architectural program is ambiguous to the boundary between inner and exterior space by transparency. 3. The mode of spacial composition by architectural diagram make to generate the architectural form and space, through the reinterpretation and relocation of architectural program. 4. The mode of spacial composition inner continuity plane is make relative between site and inner space.

Pharyngeal airway analysis of different craniofacial morphology using cone-beam computed tomography (CBCT) (Cone beam CT를 이용한 안면골격형태에 따른 상기도 공간 분석)

  • Kim, Yong-Il;Kim, Seong-Sik;Son, Woo-Sung;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.39 no.3
    • /
    • pp.136-145
    • /
    • 2009
  • Objective: CBCT has become popular for orthodontic diagnosis and treatment planning in recent times. The 3D pharyngeal airway space needs to be analysed using a 3D diagnostic tool. The aim of this study was to analyse the pharyngeal airway of different craniofacial morphology using CBCT. Methods: The sample compromised 102 subjects divided into 3 groups (Class I, II, III) and 6 subgroups according to normal or vertical craniofacial patterns. All samples had CBCT (VCT, Vatech, Seoul, Korea) taken for orthodontic treatment. The pharyngeal airway was assessed according to the reference planes: aa plane (the most anterior point on the anterior arch of atlas), $CV_2$ plane, and $CV_3$ plane (most infero-anterior point on the body of the second & third cervical vertebra). The intergroup comparison was performed with one-way ANOVA and duncan test as a second step. Results: The results showed the pharyngeal airway and anteroposterior width of group 2 (Class II) in aa plane, $CV_2$ plane, $CV_3$ plane were significant narrower than in group 3 (Class III). There was no significant difference between vertical and normal craniofacial patterns except for the anteroposterior pharyngeal width of Group 1 (Class I) in aa plane. Conclusions: Subjects with Class II patterns have a significantly narrower pharyngeal airway than those with Class III. However there was no difference in pharyngeal airway between vertical and normal craniofacial morphology.

Full mouth rehabilitation through re-establishment of occlusal plane in partially edentulous patient with reduced vertical dimension accompanied by loss of posterior occlusal support (구치부 교합지지 상실과 수직고경 감소를 동반한 부분 무치악 환자에서 교합평면 회복을 통한 완전구강회복 증례)

  • Cho, Young Eun;Leesungbok, Richard;Lee, Suk Won;Choi, Joseph June Sirk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.263-275
    • /
    • 2022
  • The loss of posterior occlusal support leads to further complications such as collapsed occlusal plane and reduced vertical dimension, and it may cause problems such as facial appearance change, reduced chewing efficiency, and temporomandibular joint disorders. In such case, it is necessary to re-establish occlusal plane and vertical dimension properly through accurate diagnosis and predictable treatment plan. This case report presents a 71-year-old female, whose occlusal plane was collapsed and posterior restorative space was insufficient. To perform a patient-friendly full mouth rehabilitation, proper vertical dimension and occlusal plane were decided by evaluation of interocclusal space at her physiologic mandibular rest position, swallowing, pronunciation, facial appearance, and the average length of anterior teeth. And then, the fixed provisional restorations were fabricated with the new occlusal position, and evaluated for 5 months with checking adaptation of masticatory muscles and any kind of clinical symptoms occurs or not. After confirmation of functional stability and esthetic satisfaction with the newly established occlusion, final definitive restorations were fabricated and inserted in the mouth. Through the above process, the treatment result was functionally and aesthetically satisfactory.

The study for changes of plane at the Jeongjagak(丁字閣) accepting functions of the Yeongakjeon(靈幄殿) (조선후기 영악전(靈幄殿) 기능수용에 따른 정자각 평면변화 고찰)

  • Shin, Ji-Hye
    • Journal of architectural history
    • /
    • v.18 no.4
    • /
    • pp.7-23
    • /
    • 2009
  • The "Jeongjagak(丁字閣, T shaped building)" was important building from Goryeo Dynasty to Joseon Dynasty. For long period, the scale and form of the building had been changing bit by bit. The change of building results from the function. As the Jeongjagak accepted the functions of the Yeongakjeon(靈幄殿), there appeared changes of plane. The main function of Yeongakjeon was suppling space for the dead king's coffin. The Yeongakjeon was not built in the first year of King Sukjong(1674). At that time, the Jeongjagak was responsible for the function of the Yeongakjeon as an alternative. Starting from this, the Jeongjagak was used as space for the dead king's coffin. Because the coffin should place on from south to north, it demanded long inner space in south-north direction. Therefore the effort to make enough length in south-north direction was begun from the first year of King Sukjong(1674). In order to solve the problem, the Toigu(退構) was made from the reign of King Sukjong to the 28th year King Youngjo(1852). The Toigu was temporary inner space which was made in one compartment at the Baewichung(拜位廳, the part of the Jeongjagak). But the length of the Jeongjagak's south-north direction was reduced to 61.8m(20尺6寸) at the 33th year of King Youngjo(1857) when the "Gukjosangryebopyon(國朝喪禮補編)" was completed. Also it extended to 84m(28尺) during the reign of King Jeongjo(1774~1800). Following these process of extension and reduction, the length was standardized as 72m(24尺) at the reign of King Sunjo(1800~1834). These facts explains that the main cause of plane change at the Jeongjagak was acceptance of functions that was used as space for the dead king's coffin. Also, the important points of change at the Jeongjagak were the first year of King Sukjong, the 33th year of King Youngjo and the first year of King Sunjo. When it was the first year of King Sukjong and the 33th year of King Youngjo, there were two national funerals. Because of concern about the increasing labor and tax of the nation, the scale of the Jeongjagak was changed to decreasing size. Due to the improvement of drawings and annotation on a Eugwe(儀軌) at the first year of King Sunjo, the size of Jeongjagak was standardized.

  • PDF