• 제목/요약/키워드: space optics

검색결과 363건 처리시간 0.029초

300-W-class Side-pumped Solar Laser

  • Qi, Hongfei;Lan, Lanling;Liu, Yan;Xiang, Pengfei;Tang, Yulong
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.627-633
    • /
    • 2022
  • To realize uniform side pumping of solar lasers and improve their output power, a solar concentrating system based on off-axis parabolic mirrors is proposed. Four identical off-axis parabolic mirrors with focal length of 1,000 mm are toroidally arranged as the primary concentrator. Four two-dimensional compound parabolic concentrators (2D-CPCs) are designed as a secondary concentrator to further compress the focused spot induced by the parabolic mirrors, and the focused light is then homogenized by four rectangular diffusers and provides uniform pumping for a laser-crystal rod to achieve solar laser emission. Simulation results show that the solar power received by the laser rod, uniformity of the light spot, and output power of the solar laser are 7,872.7 W, 98%, and 351.8 W respectively. This uniform pumping configuration and concentrator design thus provide a new means for developing high-power side-pumped solid-state solar lasers.

Design of an Optical System for a Space Target Detection Camera

  • Zhang, Liu;Zhang, Jiakun;Lei, Jingwen;Xu, Yutong;Lv, Xueying
    • Current Optics and Photonics
    • /
    • 제6권4호
    • /
    • pp.420-429
    • /
    • 2022
  • In this paper, the details and design process of an optical system for space target detection cameras are introduced. The whole system is divided into three structures. The first structure is a short-focus visible light system for rough detection in a large field of view. The field of view is 2°, the effective focal length is 1,125 mm, and the F-number is 3.83. The second structure is a telephoto visible light system for precise detection in a small field of view. The field of view is 1°, the effective focal length is 2,300 mm, and the F-number is 7.67. The third structure is an infrared light detection system. The field of view is 2°, the effective focal length is 390 mm, and the F-number is 1.3. The visible long-focus narrow field of view and visible short-focus wide field of view are switched through a turning mirror. Design results show that the modulation transfer functions of the three structures of the system are close to the diffraction limit. It can further be seen that the short-focus wide-field-of-view distortion is controlled within 0.1%, the long-focus narrow-field-of-view distortion within 0.5%, and the infrared subsystem distortion within 0.2%. The imaging effect is good and the purpose of the design is achieved.

우주망원경용 비구면 반사경 표면조도 향상을 위한 진화형 수치제어 연삭공정 모델 (NOVEL CNC GRINDING PROCESS CONTROL FOR NANOMETRIC SURFACE ROUGHNESS FOR ASPHERIC SPACE OPTICAL SURFACES)

  • 한정열;김석환;김건희;김대욱;김주환
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권2호
    • /
    • pp.141-152
    • /
    • 2004
  • 우주망원경용 비구면 반사경 가공 공정은 고정입자 연삭, 자유입자 래핑, 연마의 순서를 따른다. 숙련공에 의한 경험적 공정조절에 의해 목표 비구면을 가공하는 전통적 연삭 공정에서는 수 ${mu}m$ 높이의 표면 밑 손상을 남기며 뒤이은 자유입자 래핑 및 연마 공정에서 이를 제거하며 가공한다. 본 연구는 컴퓨터 수치 제어 연삭 공정진화 모델을 개발하여, 연삭가공을 통해 반사경 표면조도 최소 40nm이하, 가공 예측정확도 20nm급을 이루었다. 구체적인 방법론으로 초정밀가공기의 연삭모듈을 이용하여 연삭 휠 입자의 크기, 이송속도, 공작물 회전선속도 등 연삭 변수를 변화시키며 직경 20, 100mm Zerodur 소재를 초기 연삭하였다. 초기 연삭 변수와 측정된 표면조도와의 관계를 경험적 해석과 다 변수 회귀분석 해석 방법을 통하여 공정조절용 수치 연삭 모델을 구성하였다. 정량적 공정제어는 입력된 연삭변수들로부터 가공 후 표면조도를 예측하고, 측정된 표면조도를 이용하여 수치연삭 모델을 개량한 후 다음 가공에서 측정될 표면조도를 예측하는 순으로 만복 진행되었다. 본 연구에서는 CNC 연삭공정조절로부터 최소 평균 표면조도 36nm, 예측정확도 ${pm}20nm$를 얻었다. 이 연구결과는 정량적 연삭공정제어 모델을 사용하여 자유입자 래핑 공정을 수행할 필요 없이 연삭에서 직접 연마 공정으로 진행할 수 있는 획기적인 공정 효율 향상을 의미한다.

Finite Element Method (FEM) Study on Space Charge Effects in Organic Light Emitting Diodes (OLED)

  • Kim, Kwang-Sik;Hwang, Young-Wook;Won, Tae-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권4호
    • /
    • pp.467-472
    • /
    • 2012
  • In this paper, we present a finite element method (FEM) study on the space charge effects in organic light emitting diodes. The physical model covers all the key physical processes in OLEDs, namely charge injection, transport and recombination, exciton diffusion, transfer and decay as well as light coupling, and thin-film-optics. The exciton model includes generation, diffusion, and energy transfer as well as annihilation. We assumed that the light emission originates from oscillation which thus is embodied as exciton in a stack of multilayer. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution. We also report our investigation on the influence of the insertion of the emission layer (EML) in the bilayer structure.

UV STELLAR DISTRIBUTION MODEL FOR THE DERIVATION OF PAYLOAD DESIGN CONSTRAINTS

  • Choi, Young-Jun;Han, Won-Yong;Park, Jang-Hyun;Brosch, Noah
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.131-138
    • /
    • 1999
  • We present the results of a model calculation of the stellar distribution in a UV and centered at 2175$\AA$ corresponding to the well-known bump in the interstellar extinction curve. The stellar distribution model used here is based on the Bahcall-Soneira galaxy model (1980). The source code for model calculation was designed by Brosch (1991) and modified to investigate various designing factors for UV satellite payload. The model predicts UV stellar densities in different sky directions, and its results are compared with the TD-1 star counts for a number of sky regions. From this study, we can determine the field of view, size of optics, angular resolution, and number of stars in one orbit. There will provide the basic constrains in designing a satellite payload for UV observations.

  • PDF

Optical-effect Analysis of Nanoscale Collagen Fibers

  • Lee, Myoung-Hee;Kim, Young Chul
    • Current Optics and Photonics
    • /
    • 제4권2호
    • /
    • pp.141-147
    • /
    • 2020
  • To understand the cause of the high light transmittance of the human eye, the optical effects of the collagen fibers of the stroma layer, which constitute the majority of the cornea, were analyzed. These collagen fibers, approximately 20 nm in diameter, have a regular arrangement. Accordingly, the optical properties of the collagen fibers and the fiber layer were analyzed by simulation. A standing wave was formed in the incident space by the overlapping incident light and the light reflected by the plate. In addition, it was confirmed that when the collagen fibers are arranged in a layer, the light transmittance periodically changes, depending on the number of fiber layers. The standing wave was formed in the incident space, and the light's intensity distribution was changed by the nanoscale collagen fibers in the section with the collagen layer, which affected the transmittance. To explain this phenomenon, the collagen fiber was defined as a second light source, and an attempt was made to describe the simulation results in terms of overlap of the incident light with the light emitted from the collagen fiber.

MASS DISTRIBUTION IN THE CENTRAL FEW PARSECS OF OUR GALAXY

  • Oh, Seung-Kyung;S. Kim, Sung-Soo;Figer, Donald F.
    • 천문학회지
    • /
    • 제42권2호
    • /
    • pp.17-26
    • /
    • 2009
  • We estimate the enclosed mass profile in the central 10 pc of the Milky Way by analyzing the infrared photometry and the velocity observations of dynamically relaxed stellar population in the Galactic center. HST/NICMOS and Gemini Adaptive Optics images in the archive are used to obtain the number density profile, and proper motion and radial velocity data were compiled from the literature to find the velocity dispersion profile assuming a spherical symmetry and velocity isotropy. From these data, we calculate the the enclosed mass and density profiles in the central 10 pc of the Galaxy using the Jeans equation. Our improved estimates can better describe the exact evolution of the molecular clouds and star clusters falling down to the Galactic center, and constrain the star formation history of the inner part of the Galaxy.

표색계를 이용한 액정 프로젝션 시스템의 색재현 (Color reproduction using color appearance model in LCD projection systems)

  • 김지홍
    • 한국광학회지
    • /
    • 제9권6호
    • /
    • pp.373-379
    • /
    • 1998
  • 3판식 액정 프로젝션 시스템의 색재현 개선을 위한 색분리/합성 광학계의 설계 방법으로서, 다양한 시청 조건하에서 인간의 색지각 특성을 고려하여 색순응과 표시색을 이용한 최적의 색재현 구현에 대해 기술한다. 이를 위해 3차원 균등 색공간에서 재현 색영역의 체적을 성능 지수로 선정하고 이를 최대화시키는 설계 방법을 제안한다. 또한, 3판식 액정 프로젝션 시스템의 색재현 원리와 표색계 모델에 대해 기술하고 최적화 문제를 색채학적으로 제시한 후, 적용 예로서 2종류의 시청 조건에 대해 Dichroic Mirror의 경계 파장의 최적 설계치를 구하였다.

  • PDF

Pixel Intensity Histogram Method for Unresolved Stars: Case of the Arches Cluster

  • Shin, Jihye;Kim, Sungsoo S.
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.58.2-58.2
    • /
    • 2014
  • The Arches cluster is a young (2-4 Myr), compact (~1 pc), and massive (${\sim}2{\times}10^4M_{\odot}$) star cluster located ~30 pc away from the Galactic center (GC) in projection. Being exposed to the extreme environment of the GC such as elevated temperature and turbulent velocities in the molecular clouds, strong magnetic fields, and larger tidal forces, the Arches cluster is an excellent target for understanding the effects of star-forming environment on the initial mass function (IMF) of the star cluster. However, resolving stars fainter than ~1 $M_{\odot}$ in the Arches cluster partially will have to wait until an extremely large telescope with adaptive optics in the infrared is available. Here we devise a new method to estimate the shape of the low-end mass function where the individual stars are not resolved, and apply it to the Arches cluster. This method involves histograms of pixel intensities in the observed images. We find that the initial mass function of the Arches cluster should not be too different from that for the Galactic disk such as the Kroupa IMF.

  • PDF

스펙클 위상도에서 광소용돌이 현상의 관측 (Observation of optical vortices in speckle field)

  • 강전웅;윤해영;홍정기
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 하계학술발표회
    • /
    • pp.124-125
    • /
    • 2000
  • Since Nye and Berry$^{(1)}$ showed that in free space the electromagnetic field could contain stable, propagating phase singularities termed "dislocations", optical dislocations have been extensively investigated in nonlinear optics and laser physics. As the wave propagates, the lines of constant phase surrounding a dislocation trace out a spiral in space or in time. So these phase singularities are now usually referred to as optical vortices. Baranova and her co-workers$^{(2)}$ have shown that in fully developed speckle patterns, there is, one optical vortex accompanying each speckle spot on average. Among these vortices there are networks in phasemap because only one phase is to be assigned in one point except optical dislocations having zero amplitude. Freund et al.$^{(3)}$ have been studied optical dislocation networks and simulations are compared with experimental results. (omitted)

  • PDF