• 제목/요약/키워드: soybean (Glycine max L.)

검색결과 389건 처리시간 0.025초

Long-Term Study of Weather Effects on Soybean Seed Composition

  • Bennett John O.;Krishnan Hari B.
    • 한국작물학회지
    • /
    • 제50권1호
    • /
    • pp.32-38
    • /
    • 2005
  • A long-term study initiated in 1989 at San-born Field, Columbia, Missouri, was designed to evaluate the affect of environmental factors, nitrogen application, and crop rotation on soybean (Glycine max [L.] Merr.) seed composition. Soybeans were grown as part of a four- year rotation which included corn (Zea maize L.), wheat (Triticum aestivum L.), and red clover (Trifolium pratense L.). Results from soil tests made prior to initiation of the study and subsequently every five years, were used to calculate application rates of nitrogen, phosphorus, and potassium necessary for target yield of pursuant crops. In the experimental design, nitrogen was applied to one-half of the plot on which the non-leguminous crop, either corn or wheat was grown. Analysis of soybean seed by near infrared reflectance spectroscopy collected over an 11-year period revealed a linear increase in protein and decrease in oil content. Application of nitrogen fertilizer to non-leguminous crops did not have an apparent effect on total protein or oil content of subsequent soybean crop. Analysis of soybean seed proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis in conjunction with computer­assisted densitometry revealed subtle changes in the accumulation of seed proteins. Immunoblot analysis using antibodies raised against the $\beta-subunit$ of $\beta-conglycinin$ showed a gradual increase in the accumulation of the 7S components during successive years of the experiment. A linear increase in temperature and decrease in rainfall was observed from the onset of data· collection. Higher temperatures during the growing season have been linked to increased protein and diminished oil content of soybean, thus changes observed in this study are possibly related to climatic conditions. However, crop rotation and subsequent changes in soil ecology may contribute to these observed changes in the seed composition.

Genotype Fingerprinting, Differentiation and Association between Morphological Traits and SSR Loci of Soybean Landraces

  • Park, lk-Young
    • Plant Resources
    • /
    • 제1권2호
    • /
    • pp.81-91
    • /
    • 1998
  • Fifty-nine Korean soybean (Glycine max L. Merr.) landrace accessions were tested for genotype fingerprinting, differentiation and association between morphological traits and SSR profile. Using 8 SSR loci, 59 varieties were divided into 55 groups, and only 4 pairs of varieties were not uniquely identified. The resolving power of SSR for soybean genotyping was much higher than that of the morphological traits that were studied. Identification efficiency also differed among SSR loci. Those loci with higher numbers of alleles distinguished varieties more effectively. Genetic differentiation values of the soybean landraces varied from 0.57 to 0.82 with a mean of 0.68. The number of alleles detected by the 8 loci ranged from 3 to 8. and the effective number of alleles ranged from 2.3 to 5.1. In a study of the association of SSR alleles with morphological traits, some alleles seemed to be related with some specific morphological traits. Comparison of two kinds of dendrograms which were derived from SSR markers and quantitative traits indicated that the dendrograms were not consistent. Considering the correlation between single SSR locus and qualitative traits governed by major genes, the data suggest that alleles of microsatellite loci be more closely related to some traits determined by major genes than those determined by minor genes.

  • PDF

Light Quality during Seed Imbibition Affects Germination and Sprout Growth of Soybean

  • Kang, Jin-Ho;Park, A-Jung;Jeon, Byung-Sam;Yoon, Soo-Young;Lee, Sang-Woo
    • 한국작물학회지
    • /
    • 제47권4호
    • /
    • pp.292-296
    • /
    • 2002
  • Soybean seeds were treated with blue, red and far-red lights for 0, 6, 12, and 24 hours during 24-hour imbibition before culture for 6 days. The soybean sprouts raised were classified by their hypocotyl lengths; normal (>4cm), abnormal (<4cm) and non-germination, and their lateral roots, hypocotyl diameters and component dry weights were measured. Red light treatment and dark imbibition reduced the abnormal soybean sprouts more than far-red and blue light treatments, meaning that the former treatments produced more commercial sprouts. The lateral roots were more formed in blue light and dark imbibition than the other light treatments, but were completely blocked by any light treatment lasted during the whole imbibition. Although any light quality treatment did not influence their primary root lengths, blue light one lengthened the hypocotyl more than the others treated during the imbibition, and far-red light enlarged its diameter. Despite this morphological change, component, total or economic yield was not significantly different among the light quality treatments during the imbibition.

Gene Duplications Revealed during the Process of SNP Discovery in Soybean[Glycine max(L.) Merr.]

  • Cai, Chun Mei;Van, Kyu-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.237-242
    • /
    • 2007
  • Genome duplication(i.e. polyploidy) is a common phenomenon in the evolution of plants. The objective of this study was to achieve a comprehensive understanding of genome duplication for SNP discovery by Thymine/Adenine(TA) cloning for confirmation. Primer pairs were designed from 793 EST contigs expressed in the roots of a supernodulating soybean mutant and screened between 'Pureunkong' and 'Jinpumkong 2' by direct sequencing. Almost 27% of the primer sets were failed to obtain sequence data due to multiple bands on agarose gel or poor quality sequence data from a single band. TA cloning was able to identify duplicate genes and the paralogous sequences were coincident with the nonspecific peaks in direct sequencing. Our study confirmed that heterogeneous products by the co-amplification of a gene family member were the main cause of obtaining multiple bands or poor quality sequence data in direct sequencing. Counts of amplified bands on agarose gel and peaks of sequencing trace suggested that almost 27% of nonrepetitive soybean sequences were present in as many as four copies with an average of 2.33 duplications per segment. Copy numbers would be underestimated because of the presence of long intron between primer binding sites or mutation on priming site. Also, the copy numbers were not accurately estimated due to deletion or tandem duplication in the entire soybean genome.

  • PDF

The Phenotype of the Soybean Disease-Lesion Mimic (dlm) Mutant is Light-Dependent and Associated with Chloroplast Function

  • Kim, Byo-Kyong;Kim, Young-Jin;Paek, Kyoung-Bee;Chung, Jong-Il;Kim, Jeong-Kook
    • The Plant Pathology Journal
    • /
    • 제21권4호
    • /
    • pp.395-401
    • /
    • 2005
  • The dlm (disease lesion mimic) mutant of soybean (Glycine max L. Merr) shows the similar lesion of a soybean disease caused by a fungus, Corynespora cassilcola. The lesion was examined at cellular and molecular level. Trypan blue staining result indicated that cell death was detectable in the entire region of leaves excluding veins when the lesions had already been developed. We found that the mesophyll cells of palisade layer in the dim mutant appeared to be wider apart from each other. The chloroplasts of the dim mutant cells contained bigger starch granules than those in normal plants. We also found that the lesion development of dlm plant was light-dependent and the starch degradation during the dark period of diurnal cycle was impaired in the mutant. Three soybean pathogenesis-related genes, PR-1a, PR-4, and PR-10, were examined for their expression patterns during the development of disease lesion mimic. The expression of all three genes was up-regulated to some extent upon the appearance of the disease lesion mimic. Although the exact function of DLM protein remains elusive, our data would provide some insight into mechanism underling the cell death associated with the dim mutation.

Forage Yield and Quality of Summer Grain Legumes and Forage Grasses in Cheju Island

  • Kang, Young-Kil;Cho, Nam-Ki;Yook, Wan-Bang;Kang, Min-Su
    • 한국작물학회지
    • /
    • 제43권4호
    • /
    • pp.245-249
    • /
    • 1998
  • Soybean [Glycine max (L.) Merr.), mungbean [Vigna radiata (L.) Wilcz.], cowpea [V. unguiculata (L.) Walp.], adzuki bean [V. angularis (Willd.) Ohwi & Ohashi], maize [Zea mays L.], sorghum [Sorghum bicolor (L.) Moench], sorghum $\times$ sudangrass [So bicolor intraspecific hybrid], and Japanese millet [Echinochloa crusgalli var. frumentacea (Link) W.F. Wight] were grown at two planting dates (18 June and 15 July) at Cheju in 1997 to select the best forage legumes adapted to Cheju Island for grass-legume forage rotation. Averaged across planting dates and cultivars, dry matter (DM), crude protein (CP), and total digestible nutrient (TDN) yields were 5,646, 1,056, and 3,637 kg/ha for soybean, 4,458, 676, and 2,661 kg/ha for mungbean, 3,289, 553, and 2,055 kg/ha for cowpea, 3,931, 674, and 2,489 kg/ha for adzuki bean, 12,695, 969, and 7,642 kg/ha for maize, 17,071, 1,260, and 8,857 kg/ha for sorghum, 16,355, 1,163, and 8,543 kg/ha for sorghum $\times$ sudangrass hybrid, and 8,288, 929, and 4,091 kg/ha for Japanese millet. Soybean was higher in CP, ether extract (EE), and TON content but was lower in nitrogen free extract content compared with the three other legumes. The legumes had much higher CP (13.7 to 21.9%), EE (2.42 to 6.23%), and TDN (58.7 to 69.9%) content but lower in crude fiber (CF) content (17.3 to 25.3%) than did the grasses tested except maize which had relatively lower CF content but higher TDN content. These results suggest that soybean could be the best forage legume for grass-legume forage rotation in the Cheju region.

  • PDF

Comparing LAI Estimates of Corn and Soybean from Vegetation Indices of Multi-resolution Satellite Images

  • Kim, Sun-Hwa;Hong, Suk Young;Sudduth, Kenneth A.;Kim, Yihyun;Lee, Kyungdo
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.597-609
    • /
    • 2012
  • Leaf area index (LAI) is important in explaining the ability of the crop to intercept solar energy for biomass production and in understanding the impact of crop management practices. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal series of IKONOS, Landsat TM, and MODIS satellite images using empirical models and demonstrates its use with data collected at Missouri field sites. LAI data were obtained several times during the 2002 growing season at monitoring sites established in two central Missouri experimental fields, one planted to soybean (Glycine max L.) and the other planted to corn (Zea mays L.). Satellite images at varying spatial and spectral resolutions were acquired and the data were extracted to calculate normalized difference vegetation index (NDVI) after geometric and atmospheric correction. Linear, exponential, and expolinear models were developed to relate temporal NDVI to measured LAI data. Models using IKONOS NDVI estimated LAI of both soybean and corn better than those using Landsat TM or MODIS NDVI. Expolinear models provided more accurate results than linear or exponential models.

Silage용 옥수수와 두과작물의 간작에 관한 연구 I. Silage용 옥수수 ( Zea mays L. ) 동부 ( Vigna sinensis King ) 의 간작이 생육특성과 건물 및 유기물 수량에 미치는 영향 (Studies on Corn-Legume Intercropping System III. Growth charateristics, dry matter and organic matter yield in corn(Zea mays L.) and soybean(Glycine max L. Merr) intercropping)

  • 이성규
    • 한국초지조사료학회지
    • /
    • 제8권3호
    • /
    • pp.158-164
    • /
    • 1988
  • The growth characteristics and yield per unit area of two cropping systems, corn monoculture and 'wrnsoybean intercropping, were compared and the obtained results were as follows; 1.The two cultivation systems were not significantly different in leaf length, leaf width and length of internode at harvesting time. 2.The weight of stalk and the leaves of a plant were decreased with maturity, while the weight of ear was markedly increased. The patterns of relative ratio of each components were essentialy same in each cultivation systems. In corn monoculture, the percentages of stalk, leaf, and ear at final harvesting stage were 22.9, 13.7, and 63.4 and in corn-soybean intercropping, they were 21.8, 10.9, and 67.3 respectively. 3.Dry matter yield per unit area (kg/lOa) of intercropped corn at yellow stage was similar to that of monocultured corn (1, 483 kg/ 10a vs 1, 509 kg/ 10a). At ripe stage, however, the dry matter yield of intercropped plant was more than that of monocultured (1, 679 vs 1, 660 kg/ 10a). 4.The same pattern was observed in organic matter yield.

  • PDF