DOI QR코드

DOI QR Code

The Phenotype of the Soybean Disease-Lesion Mimic (dlm) Mutant is Light-Dependent and Associated with Chloroplast Function

  • Kim, Byo-Kyong (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Young-Jin (School of Life Sciences and Biotechnology, Korea University) ;
  • Paek, Kyoung-Bee (School of Life Sciences and Biotechnology, Korea University) ;
  • Chung, Jong-Il (Division of Plant Resources and Environment, Gyeongsang National University) ;
  • Kim, Jeong-Kook (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2005.12.01

Abstract

The dlm (disease lesion mimic) mutant of soybean (Glycine max L. Merr) shows the similar lesion of a soybean disease caused by a fungus, Corynespora cassilcola. The lesion was examined at cellular and molecular level. Trypan blue staining result indicated that cell death was detectable in the entire region of leaves excluding veins when the lesions had already been developed. We found that the mesophyll cells of palisade layer in the dim mutant appeared to be wider apart from each other. The chloroplasts of the dim mutant cells contained bigger starch granules than those in normal plants. We also found that the lesion development of dlm plant was light-dependent and the starch degradation during the dark period of diurnal cycle was impaired in the mutant. Three soybean pathogenesis-related genes, PR-1a, PR-4, and PR-10, were examined for their expression patterns during the development of disease lesion mimic. The expression of all three genes was up-regulated to some extent upon the appearance of the disease lesion mimic. Although the exact function of DLM protein remains elusive, our data would provide some insight into mechanism underling the cell death associated with the dim mutation.

Keywords

References

  1. Athow, K. L. 1987. Fungal diseases. In: Soybeans-improvement, production, and uses, ed. by J. R. Wilcox, pp. 687-727. American Society of Agronomy, Madison, Wisconsin
  2. Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F. and Dong, X. 1994. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845-1857 https://doi.org/10.1105/tpc.6.12.1845
  3. Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F. and Dong, X. 1997. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573-1584 https://doi.org/10.1105/tpc.9.9.1573
  4. Broderson, P., Petersen, M., Pike, H. M., Olszak, B., Skov, S., O dum, S., Jorgensen, L. B., Brown, R. E. and Mundy, J. 2002. Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev. 16:490-502 https://doi.org/10.1101/gad.218202
  5. Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695-705 https://doi.org/10.1016/S0092-8674(00)81912-1
  6. Chung, J., Staswick, P. E., Graef, G. L., Wysong, D. S. and Specht, J. E. 1998. Inheritance of a disease lesion mimic mutant in soybean. J. Heredity 89:363-365 https://doi.org/10.1093/jhered/89.4.363
  7. Clarke, J. D., Liu, Y., Klessig, D. F. and Dong, X. 1998. Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. Plant Cell 10:557-569 https://doi.org/10.1105/tpc.10.4.557
  8. Collins, N., Drake, J., Ayliffe, M., Sun, Q., Ellis, J., Hulbert, S. and Pryor, T. 1999. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365-1376 https://doi.org/10.1105/tpc.11.7.1365
  9. Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., von Heijne, G. and Schulze-Lefert, P. 1999. Topology, subcellular localization, and sequence diversity of the Mlo family in plants, J. Biol. Chem. 274:34993-35004 https://doi.org/10.1074/jbc.274.49.34993
  10. Frye, C. A., Tang, D. and Innes, R. W. 2001. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 98:373-378 https://doi.org/10.1073/pnas.011405198
  11. Goodman, R. N. and Novacky, A. J. 1994, The Hypersensitive Response Reaction in Plants to Pathogens, A Resistance Phenomenon. American Phytopathological Society Press, St Paul, Minnesota
  12. Greenberg, J. T. 1997. Programmed cell death in plant-pathogen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:525-545 https://doi.org/10.1146/annurev.arplant.48.1.525
  13. Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407:770-776 https://doi.org/10.1038/35037710
  14. Hippeli, S., Heiser, I. and Elstner, E. F. 1999. Activated oxygen and free oxygen radicals in pathology: new insights and analogies between animals and plants. Plant Physiol. Biochem. 37:167-178 https://doi.org/10.1016/S0981-9428(99)80031-X
  15. Hu, G., Richter, T. E., Hulbert, S. H. and Pryor, T. 1996. Disease lesion mimicry caused by mutations in the rust resistance gene rp1. Plant Cell 8:1367-1376 https://doi.org/10.1105/tpc.8.8.1367
  16. Hu, G., Yalpani, N., Briggs, S. P. and Johal, G. S. 1998. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095-1105 https://doi.org/10.1105/tpc.10.7.1095
  17. Ishikawa, A., Okamoto, H., Iwasaki, Y. and Asahi, T. 2001. A deficiency of coproprophyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J. 27:89-99 https://doi.org/10.1046/j.1365-313x.2001.01058.x
  18. Jabs, T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 57:231-245 https://doi.org/10.1016/S0006-2952(98)00227-5
  19. Jabs, T., Dietrich, R. A. and Dangl, J. L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853-1856 https://doi.org/10.1126/science.273.5283.1853
  20. Jones, A. M. 2001. Programmed cell death in development and defense. Plant Physiol. 125:94-97 https://doi.org/10.1104/pp.125.1.94
  21. Kim, H. K., Jang, Y. H., Baek, I. S., Lee, J. H., Park, M. J., Chung, Y.-S., Chung, J.-I. and Kim, J.-K. 2005. Polymorphism and expression of isoflavone synthase genes from soybean cultivars. Mol. Cells. 19:67-73
  22. Kim, Y. J. and Martin, G. B. 2004. Molecular mechanisms involved in bacterial speck disease resistance of tomato. Plant Pathol. J. 20:7-12 https://doi.org/10.5423/PPJ.2004.20.1.007
  23. Kliebenstein, D. J., Dietrich, R. A., Martin, A. C., Last, R. L. and Dangl, J. L. 1999. LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 12:1022-1026 https://doi.org/10.1094/MPMI.1999.12.11.1022
  24. Lorrain, S., Vailleau, F., Balague, C. and Roby, D. 2003. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 8:263-271 https://doi.org/10.1016/S1360-1385(03)00108-0
  25. Mach, J. M., Castillo, A. R., Hoogstraten, R. and Greenberg, J. T. 2001. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc. Natl. Acad. Sci. USA 98:771-776 https://doi.org/10.1073/pnas.021465298
  26. Manzano, D., Fernandez-Busquets, X., Schaller, H., Gonzalez, V., Boronat, A., Arro, M. and Ferrer, A. 2004. The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform 1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity. Planta 219:982-992 https://doi.org/10.1007/s00425-004-1301-y
  27. Mock. H. P., Heller, W., Molina, A., Neubohn, B., Sandermann, H. Jr. and Grimm, B. 1999. Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus. J. Biol. Chem. 274:4231-4238 https://doi.org/10.1074/jbc.274.7.4231
  28. Mock, H. P., Keetman, U., Kruse, E., Rank, B. and Grimm, B. 1998. Defense responses to tetrapyrrole-induced oxidative stress in transgenic plants with reduced uroporphyrinogen decarboxylase or coproporphyrinogen oxidase activity. Plant Physiol. 116:107-116 https://doi.org/10.1104/pp.116.1.107
  29. Molina, A., Volrath, S., Guyer, D., Maleck, K., Ryals, J. and Ward, E. 1999. Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J. 17:667-678 https://doi.org/10.1046/j.1365-313X.1999.00420.x
  30. Mou, A., He, Y., Dai, Y., Liu, X. and Li, J. 2000. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell 12:405-417 https://doi.org/10.1105/tpc.12.3.405
  31. Park, C. Y., Heo, W. D., Yoo, J. H., Lee, J. H., Kim, M. C., Chun, H. C., Moon, B. C., Kim, I. H., Park, H. C., Choi, M. S., Ok, H. M., Cheong, M. S., Lee, S. M., Kim, H. S., Lee, K. H., Lim, C. O., Chung, W. S. and Moo, J. C. 2004. Pathogenesis-related gene expression by specific calmodulin isoforms is dependent on NIM1, a key regulator of systemic acquired resistance. Mol. Cells 18:207-213
  32. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., Sharma, S. B., Klessig, D. F., Martienssen, R., Mattsson O., Jensen, A. B. and Mundy, J. 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111-1120 https://doi.org/10.1016/S0092-8674(00)00213-0
  33. Rate, D. N., Cuenca, J. V., Bowman, G. R., Guttman, D. S. and Greenberg, J. T. 1999. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11:1695-1708 https://doi.org/10.1105/tpc.11.9.1695
  34. Shin, B. S., Lee, J. -H., Lee, J. -H., Jeong, H. -J., Yun, C. -H. and Kim, J. -K. 2004. Circadian regulation of rice (Oryza sativa L.) CONSTANS-like gene transcripts. Mol. Cells 17:10-16
  35. Shirasu, K. and Schulze-Lefert, P. 2000. Regulators of cell death in disease resistance. Plant Mol. Biot. 44:371-385 https://doi.org/10.1023/A:1026552827716
  36. Simon, H-U., Haj-Yehia, A. and Levi-Schaffer, F. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415-418 https://doi.org/10.1023/A:1009616228304
  37. Stone, J. M., Heard, J. E., Asai, T. and Ausubel, F. M. 2000. Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. Plant Cell 12:1811-1822 https://doi.org/10.1105/tpc.12.10.1811
  38. Sun, Q., Collins, N. C., Ayliffe, M., Smith, S. M., Drake, J., Pryor, T. and Hulbert, S. H. 2001. Recombination between paralogues at the rp1 rust resistance locus in maize. Genetics 158:423-438
  39. van Doorn, W. G. and Woltering, E. J. 2005. Many ways to exit? Cell death categories in plants. Trends Plant Sci. 10:117-122 https://doi.org/10.1016/j.tplants.2005.01.006
  40. Vogel, J. and Somerville, S. 2000. Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc. Natl. Acad. Sci. USA 97:1897-1902
  41. Von Ahsen, O., Waterhouse, N. J., Kuwana, T., Newmeyer, D. D., and Green, D. R. 2000. The 'harmless' release of cytochrome c. Cell Death Diff. 7:1192-1199 https://doi.org/10.1038/sj.cdd.4400782
  42. Weintraub, M. and Ragetli, H. W. 1964. An electron microscope study of tobacco mosaic virus lesions in Nicotiana glutinosa L. J. Cell Biol. 23:499-509 https://doi.org/10.1083/jcb.23.3.499

Cited by

  1. Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis vol.5, pp.11, 2010, https://doi.org/10.4161/psb.5.11.13705
  2. Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses vol.227, pp.2, 2007, https://doi.org/10.1007/s00425-007-0628-6
  3. , conducts constitutive defence response in rice pp.14358603, 2018, https://doi.org/10.1111/plb.12896