• Title/Summary/Keyword: southward IMF

Search Result 13, Processing Time 0.021 seconds

Response of the Geomagnetic Activity Indices to the Solar Wind Parameters

  • Ahn, Byung-Ho;Park, Yoon-Kyung
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • This study attempts to show how the geomagnetic indices, AU, AL and Dst, respond to the interplanetary parameters, more specifically, the solar wind electric field VBz during southward interplanetary magnetic field (IMF) period. The AU index does not seem to respond linearly to the variation of southward IMF. Only a noticeable correlation between the AU and VBz is shown during summer, when the ionospheric conductivity associated with the solar EUV radiation is high. It is highly likely that the effect of electric field on the eastward electrojet intensification is only noticeable whenever the ionospheric conductivity is significantly enhanced during summer. Thus, one should be very cautious in employing the AU as a convection index during other seasons. The AL index shows a significantly high correlation with VBz regardless of season. Considering that the auroral electrojet is the combined result of electric field and ionospheric conductivity, the intensification of these two quantities seems to occur concurrently during southward IMF period. This suggests that the AL index behaves more like a convection index rather than a substorm index as far as hourly mean AL index is concerned. Contrary to the AU index, the AL index does not register the maximum value during summer for a given level of VBz. It has something to do with the findings that discrete auroras are suppressed in sunlight hemisphere (Newell et al. 1996), thus reducing the ionospheric conductivity during summer. As expected, the Dst index tends to become more negative as VBz gets intensified. However, the Dst index (nT) is less than or equal to 15VBz(mV/m) + 50(Bz < 0). It indicates that VBz determines the lower limit of the storm size, while another factor(s), possibly substorm, seems to get further involved in intensifying storms. Although it has not been examined in this study, the duration of southward IMF would also be a factor to be considered in determining the size of a storm.

Thermospheric Wind Observation and Simulation during the Nov 4, 2021 Geomagnetic Storm Event

  • Wu, Qian;Lin, Dong;Wang, Wenbin;Ward, William
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Thermospheric wind observations from high to mid latitudes are compared with the newly developed Multiscale Atmosphere Geospace Environment (MAGE) model for the Nov 3-4 geomagnetic storm. The observation and simulation comparison shows a very good agreement and is better at high latitudes in general. We were able to identify a thermospheric poleward wind reduction possibly linked to a northward turning of the Interplanetary Magnetic Field (IMF) at ~22 UT on Nov 3 and an enhancement of the poleward wind to a southward turning near 10 UT on Nov 4 at high latitudes. An IMF southward turning may have led to an enhancement of equatorward winds at Boulder, Colorado near midnight. Simultaneous occurrence of aurora may be associated with an IMF By turning negative. The MAGE model wind simulations are consistent with observations in these cases. The results show the model can be a very useful tool to further study the magnetosphere and ionosphere coupling on short time scales.

태양풍 동압력 증가에 의한 밤 지역 극관의 위도 상 위치 변화

  • Jo, Jun-Sik;Lee, Dae-Yeong;Kim, Gyeong-Chan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.41.2-41.2
    • /
    • 2010
  • 태양풍 동압력은 지구 자기장에 부딪히면서 많은 영향을 준다. 여기서 우리는 태양풍 동압력이 증가하는 경우 밤 지역 극관의 위도 상 위치 변화에 대해 관심이 있다. 동압력 증가 이전과 이후의 극관의위치를결정하기위해 DMSP(Defense Meteorological Satellite Program) 위성이 관측한 하강 입자 자료를 사용하였고 이로부터 산출된 b5e parameter 값을 통해 극관의 위치를 결정하였다. 특히 IMF의 각 성분 별 방향과 크기에 대한 조건이 극관의 위치에 영향을 미친다는 점을 고려하여 분석하였다. 분석 결과를 통해 동압력이 증가하는 경우 극관의 위치가 고위도로 올라 간다는 것을 확인하였다. 이는 극관의 크기가 수축한다는 것을 의미한다. 또한 IMF Bz가 북쪽 방향(northward IMF Bz)인 경우와 남쪽 방향(southward IMF Bz)인 경우에 따라 극관이 이동하는 정도에 약간의 차이가 있음을 알 수 있었다. 그런데 통계적으로 볼 때 극관의 위도상 위치가 상당히 분산되어 있음을 알게 되었다. 즉, 가능한 극관의 위도 분포가 매우 넓은 영역에 걸쳐 있음을 말한다. 이러한 분산 현상은 극관의 위치를 결정하는데 여러 이유가 복합적으로 작용 할 수 있음을 시사한다.

  • PDF

Some Statistical Characteristics of Substorms Under Northward IMF Conditions (북쪽방향 IMF 조건하에서 발생하는 서브스톰의 통계적 특성)

  • Lee, Ji-Hee;Lee, D.Y.;Choi, K.C.;Jeong, Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.451-466
    • /
    • 2009
  • While substorms are known to generally occur under southward IMF conditions, they can sometimes occur even under northward IMF conditions. In this paper, we studied the substorms that occurred in May, 2000 to 2002 to examine some statistical characteristics of the IMF and solar wind associated with northward IMF substorms. We focused on the cases where two or more substorms occurred successively under northward IMF conditions. Also, by checking Sym-H index associated with each of the substorms we determined whether or not there is any association of such northward IMF substorm occurrence with storm times. We also examined statistical properties at geosynchronous altitude in terms of magnetic field dipolarization and energetic particle injection. The following results were obtained. (i) Most of the northward IMF substorms occurred under average solar wind conditions. The majority of them occurred within 2 hrs duration of northward IMF Bz state, but there are also a nonnegligible number of substorms that occurred after a longer duraiton of northward IMF Bz state. (ii) While most of the substorms occurred as isolated from a magnetic storm time, those that occurred in a magnetic storm time show a higher average value of IMF and solar wind than that for the isolated substorms. (iii) About 55% of the substorms were associated with the IMF clock angle that can possibly allow dayside reconnection, and the other 45% were associated with more or less pure northward IMF conditions. Therefore, for the latter cases, the energy input from the solar wind into the magnetosphere should be made by other way than the dayside reconnection. (iv) For most of the substorms, the magnetic field dipolarizations and energetic particle injections at geosynchronous altitude were identified to be generally weak. But, several events indicated strong magnetic field dipolarizations and energetic particle injections.

CORRELATION BETWEEN MONTHLY CUMULATIVE AURORAL ELECTROJET INDICES, DST INDEX AND INTERPLANETARY ELECTRIC FIELD DURING MAGNETIC STORMS (자기폭풍 기간 동안의 월별 누적 오로라 제트전류 지수, Dst 지수 및 행성간 전기장 사이의 상관관계)

  • Park, Yoon-Kyung;Ahn, Byung-Ho;Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.409-418
    • /
    • 2005
  • Magnetospheric substorms occur frequently during magnetic storms, suggesting that the two phenomena are closely associated. We can investigate the relation between magnetospheric substorms and magnetic storms by examining the correlation between AE and Dst indices. For this purpose, we calculated the monthly cumulative AU, $\mid{AL}\mid$ and $\mid{Dst}\mid$ indices. The correlation coefficient between the monthly cumulative $\mid{AL}\mid$ and $\mid{Dst}\mid$ index is found to be 0.60, while that between monthly cumulative AU and $\mid{Dst}\mid$ index is 0.28. This result indicates that substorms seem to contribute to the development of magnetic storms. On the other hand, it has been reported that the interplanetary electric field associated with southward IMF intensifies the magnetospheric convection, which injects charged particles into the inner magnetosphere, thus developing the ring current. To evaluate the contribution of the interplanetary electric field to the development of the storm time ring current belt, we compared the monthly cumulative interplanetary electric field and the monthly cumulative Dst index. The correlation coefficient between the two cumulative indices is 0.83 for southward IMP and 0.39 for northward IMF. It indicates that magnetospheric convection induced by southward IMF is also important in developing magnetic storms. Therefore, both magnetospheric substorm and enhanced magnetospheric convection seem to contribute to the buildup of magnetic storm.

Global MHD Simulation of a Prolonged Steady Weak Southward Interplanetary Magnetic Field Condition

  • Park, Kyung Sun;Lee, Dae-Young;Kim, Khan-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2020
  • We performed high-resolution three-dimensional global magnetohydrodynamic (MHD) simulations to study the interaction between the Earth's magnetosphere and a prolonged steady southward interplanetary magnetic field (IMF) (Bz = -2nT) and slow solar wind. The simulation results show that dayside magnetic reconnection continuously occurs at the subsolar region where the magnetosheath magnetic field is antiparallel to the geomagnetic field. The plasmoid developed on closed plasma sheet field lines. We found that the vortex was generated at the magnetic equator such as (X, Y) = (7.6, 8.9) RE due to the viscous-like interaction, which was strengthened by dayside reconnection. The magnetic field and plasma properties clearly showed quasiperiodic variations with a period of 8-10 min across the vortex. Additionally, double twin parallel vorticity in the polar region was clearly seen. The peak value of the cross-polar cap potential fluctuated between 17 and 20 kV during the tail reconnection.

Relationships between solar/interplanetary (IP) parameters and Dst index, according to IP sources

  • Ji, Eun-Young;Moon, Yong-Jae;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • We have investigated interplanetary (IP) structures of 82 intense geomagnetic storms (Dst $\leq$ -100 nT) that occurred from 1998 to 2006. According to their interplanetary origins, we classified them as four groups: 20 sMC events (IP shock and MC), 19 SH events (sheath field), 12 SH+MC events (Sheath field and MC), and 8 nonMC events (non-MC type ICME). For each group, we examined the relationships between Dst index and solar/IP parameters, namely, direction parameter (DP), CME speed ($V_{CME}$), solar wind speed ($V_{SW}$), minimum of IMF $B_z$ component($Bz_{min}$), and maximum of $E_y$ component ($Ey_{max}$).We found that the relationships strongly depend on their IP source. Our main results can be summarized as follows: 1) The correlation between Dst and DP is the best for the SH+MC events (r = -0.61). 2) The relationship between Dst and $V_{CME}$ gives the best correlation for the sMC events (r = -0.56). 3) There is the best correlation between Dst and $V_{SW}$ for the sMC events (r = -0.61), while there is a very weak correlation (r=-0.17) for the SH events. 4) The relationship between Dst and $Bz_{min}$ gives the best correlation (r = -0.87) for the SH+MC events. 5) The correlation between Dst and $Ey_{max}$ is the best for the SH+MC events (r = -0.87). Summing up, the sMC and SH+MC events give us good correlations, but the SH events, weak correlations. From this study, we suggest that this tendency should be caused by the characteristics of IMF southward components, e.g., smooth field rotations for the MC events and highly IMF fluctuations for the SH events.

  • PDF

Variation of Magnetic Field (By, Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

  • Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.123-132
    • /
    • 2011
  • It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME)-driven storms, co-rotating interaction region (CIR)-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF $B_y$ and $B_z$ components (in geocentric solar magnetospheric coordinate system coordinate) during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst) index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of $B_z$ < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF $B_z$ (T1~T4) is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0%) under the $B_z$ < 0 condition. It is found that the correlation is highest between the time-integrated IMF $B_z$ and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is found between timeintegrated $B_z$ and time-integrated Dst index. The relationship between storm size and time lag in terms of hours from $B_z$ minimum to Dst minimum values is investigated. For the CME-driven storms, time lag of 26% of moderate storms is one hour, whereas time lag of 33% of moderate storms is two hours for the CIR-driven storms. The average values of solar wind parameters for the CME and CIR-driven storms are also examined. The average values of ${\mid}Dst_{min}{\mid}$ and ${\mid}B_{zmin}{\mid}$ for the CME-driven storms are higher than those of CIR-driven storms, while the average value of temperature is lower.

Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006 (2006년 발생한 고속 태양풍과 관련된 정지궤도에서의 상대론적 전자 증가 이벤트)

  • Lee, Sung-Eun;Hwang, Jung-A;Lee, Jae-Jin;Cho, Kyung-Suk;Kim, Khan-Hyuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.439-450
    • /
    • 2009
  • Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs) were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1) High speed stream, (2) Pc5 ULF wave activity, (3) Southward IMF Bz, (4) substorm occurrence, (5) Whistler mode chorus wave, and (6) Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

RELATIONSHIPS OF THE SOLAR WIND PARAMETERS WITH THE MAGNETIC STORM MAGNITUDE AND THEIR ASSOCIATION WITH THE INTERPLANETARY SHOCK

  • OH SU YEON;YI YU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.151-157
    • /
    • 2004
  • It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and $BZ_(min)$ are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.