• Title/Summary/Keyword: source processes

Search Result 981, Processing Time 0.031 seconds

Biorefinery Based on Weeds and Agricultural Residues (잡초 및 농림부산물을 이용한 Biorefinery 기술개발)

  • Hwang, In-Taek;Hwang, Jin-Soo;Lim, Hee-Kyung;Park, No-Joong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.340-360
    • /
    • 2010
  • The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.

Study on the Antioxidant Effects of Nano-Selenium Microcapsule (Nano-Selenium Microcapsule의 항산화에 관한 연구)

  • Jeong, Hun;Yoo, Il-Su;Kim, Kyung-Sun;Lee, Soon-Young;Mun, Yeun-Ja;Jeon, Byoung-Kook;Ryu, Moon-Hee;Choi, Kyung-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.564-569
    • /
    • 2012
  • Selenium was initially considered toxic to humans, but it was then discovered that selenium is essential for normal life processes. Selenium plays important roles in antioxidants. It is expected that chitosan microcapsules containing nano-selenium will be able to be used as a key material in bio-medical and cosmetic applications. The high concentration of chitosan derivatives guarantees increased antioxidative activity. Both inorganic and organic forms of selenium can be nutritional sources. The antioxidant properties of selenoproteins help prevent cellular damage from free radicals. The objective of this experiment was to study the antioxidative activity of chitosan nano-selenium. Our experiments were divided into five groups, in the presence of various concentrations(0.1%, 0.3%, 0.5%, 0.7%, and 0.9%) of chitosan. We performed an assessment of the antioxidant properties and cytotoxicity of respective concentrations of chitosan nano-selenium. The antioxidant activity was examined by the free radical scavenging activity on 1,1-diphenyl-2-picrylhydrazyl(DPPH) assay. The cytotoxicity effect was measured by means of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay. As a result, the electron donating abilities of 0.1%, 0.3%, 0.5%, 0.7%, and 0.9% of chitosan nano-selenium exhibited effective andioxidant scavenging activity at 12.5 ${\mu}g/m{\ell}$ against DPPH radicals. 0.3% chitosan nano-selenium did not show cytotoxicity on human keratinocytes. In general, the cytotoxicity of 0.1% and 0.9% chitosan nano-selenium showed the lowest effects. Though low cytotoxicity of 0.5% and 0.7% chitosan nano-selenium exhibited 29.67% and 38.4% against human keratinocytes on adding 100 ${\mu}g/m{\ell}$ and 50 ${\mu}g/m{\ell}$, respectively, cell vitality was recovered with 200 ${\mu}g/m{\ell}$. These findings support the notion that chitosan nano-selenium may be useful as a new active ingredient source for bioactive compounds.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Deterioration Diagnosis and Source Area of Rock Properties at the West Stone Pagoda, Gameunsaji Temple Site, Korea (감은사지 서탑의 풍화훼손도 진단 및 석재의 산지추정)

  • Lee Chan Hee;Lee Myeong Seong;Suh Mancheol;Choi Seok-Won;Kim Man Gap
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.569-583
    • /
    • 2004
  • The rock properties of the West pagoda in the Gameunsaji temple site are composed mainly of dark grey porphyritic granodiorite with medium grained equigranular texture and developed with small numerous dioritic xenoliths. These xenoliths occurred with small holes due to different weathering processes. As a weathering results, the rock properties of this pagoda occur wholly softened to physical hardness because of a complex result of petrological, meteorological and biological causes. Southeastern part of the pagoda deteriorated seriously that the surface of rock blocks showed partially exfoliations, fractures, open cavities in course of granular decomposition of minerals, sea water spray and crystallization of salt from the eastern coast. The Joint between blocks has small or large fracture cross each other, contaminated and corrupted for inserting with concrete, cement mortar, rock fragments and iron plates, and partially accelerated coloration and fractures. There are serious contamination materials of algae, fungus, lichen and bryophytes on the margin and the surface on the roof stone of the pagoda, so it'll require conservation treatment biochemically for releasing vegetation inhabiting on the surface and the discontinuous plane of the blocks because of adding the weathering activity of stones and growing weeds naturally by soil processing on the fissure zone. Consisting rock for the conservation and restoration of the pagoda would be careful choice of new rock properties and epoxy to reinforce for the deterioration surfaces. For the attenuation of secondary contamination and surface humidity, the possible conservation treatments are needed.

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.

Studies on the Sources of Bacterial Contamination in U. H. T. Processed Milk (살균시유(殺菌市乳)의 세균오염원(細菌汚染源)에 관한 연구(硏究))

  • Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 1980
  • In order to elucidate the source of bacterial contamination during processing U. H. T. milk and to ensure its hygienic control, bacterial numbers were determined each step of the processes on the milks, water, tanks and pipe lines, and environments. The results obtained were as follows. 1. The viable numbers of mesophilic bacteria were $1.2{\sim}1.9{\times}10^7/ml$ of milk in the storage tank and in pipe line connected to the preheater. These were decreased to $7.0{\times}10cells{\sim}3.4{\times}10^2cells/ml$ after preheating and homogenization, and to $1.0{\times}10cells/ml$ after sterilization, then increased up to $1.2{\times}10^2cells/ml$ after packing. 2. The numbers of thermophilic bacteria were $5.0{\times}10cells{\sim}1.0{\times}10^2cells/ml$ of milk before preheating ; $3.0{\sim}5.0{\times}10cells/ml$ after homogenization ; none in the sterilizer and surge tank ; and $1.0{\sim}8.0{\times}10cells/ml$ after packing. 3. The levels of psychrophilic bacteria were $1.0{\sim}3.7{\times}10^6cells/ml$ of milk before preheating ; $1.0{\sim}4.0{\times}10cells/ml$ after homogenization ; $1.0{\times}10cells/ml$ after sterilization ; and $2.0{\times}10cells{\sim}2.5{\times}10^2cells/ml$ after packing. 4. No coliform bacteria were detected after sterilization, while the level before preheating was $2.1{\times}10^4cells{\sim}6.5{\times}10^5cells/ml$ of milk. 5. The level of mesophiles was $3.0{\times}10cells{\sim}7.4{\times}10^2cells$ in the environmental air, water supply, and unfilled packs and bottles ; that of thermophiles $1.0{\sim}3.0{\times}10cells$ in the air and water ; that of psychrophiles $1.0{\times}10cells{\sim}1.0{\times}10^2cells$ in the air, water, packs and bottles ; however no coliform was detected.

  • PDF

Investigation of Nutrient Release from the Sediments Near Weir in the Namhan River (남한강 보 구간 퇴적물의 영양염류 용출에 관한 연구)

  • Kim, Hye Yeon;Huh, In Ae;Choi, Jung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.554-563
    • /
    • 2013
  • The purpose of this study is to evaluate the possibility of nutrient release at up and downstream of Kangchun weir, upstream of Yuju and Ipo weir in Namhan River. For this survey, we measured basic characteristics of the sediments (water content, ignition loss, TOC, TP, SRP, TN, phosphorus fractionation) and conducted nutrients release experiments under both aerobic and anaerobic condition. The overlying water from the sediment-water column was analyzed for nutrients (i.e. TP, $PO_4$-P, TN, $NO_3$-N, $NH_3$-N) everyday for 18days. Result of soil texture experiment showed that sediments are Sand. SRP concentration before the release experiment was different with the value after the release experiment. According to this result, we can find that there were more activated release processes in anaerobic condition. $PO_4$-P increased from 1 to 8 days and remained at the maximum value (7~8 days) afterward. The rapidly increase of $PO_4$-P was observed from 1 to 2~3 days whereas the TP continuously increase from 1 to 18 days. The $PO_4$-P release rate calculated by up to 7~8 days data highly correlated with initial SRP concentration with $R^2$=0.8502. $NO_3$-N release rate appears constantly decreasing trend as -5.7~-3.08 $mg/m^2{\cdot}day$, otherwise the $NH_3$-N release rate, by-product of a organic matter decomposition using nitrate as electron acceptor, was 0.57~2.41 $mg/m^2{\cdot}day$. Substantial portion in TN can be induced by organic nitrogen which originated from the tributary passing through non-point pollutant source. Compared with other similar researches, phosphorus and nitrogen release rates obtained in this study can be considered as relatively low values. Since this study targeted the sediments accumulated by one time of flooding season, there are limitation to generalize theses results. Therefore, it is necessary to consistently monitor and investigate the accumulation of nutrients in the sediment for understanding the effect of weir construction on the overlying water quality.

Study on the Usage Status and the Management Process of Ingredients in Fried Foods Provided in School Food Services (학교급식에서 제공되는 튀김식품의 원료별 이용실태 및 관리공정)

  • Kim, Eun-Mi;Yi, Hae-Chang;Kim, Sun-A;Lee, Min-A;Kim, Jae-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.261-266
    • /
    • 2009
  • All of the subjects of the investigation (n=141) were schools that have food services under direct management. The number of students who get food services at the schools were $1,001{\sim}1,500$ students with 46.8% investigation. In school food services, fried foods were highly preferred and the biggest merits of fried foods were (in order of highest importance) 'improvement of food services satisfaction'> 'source of calories supply'> 'easiness of cooking process'. Service frequency of fried food were in the order of 'twice a week'> 'three times a week'> 'once a week', and for the factors to decide service frequency of fried food, 'preference leaning on fried food', and 'excessive fat intake' were the most considered. The most considered factors in the case of choosing fried food were 'preference' and 'calories and nutritional value'. For the cautious steps during the frying process, 'keeping after frying' was picked the most, and the reasons were 'lack of containers to keep in appropriate temperature and quality' and 'time consuming'. For preference and service frequency of ingredients in fried foods, 'chicken' and 'pork' were very high. As the result, it was analyzed that preference by ingredients matched service in school lunches by using a ranking test. Total cooking and processing time of fried foods required in school lunches were approximately $237{\pm}99$ minutes ${\sim}291{\pm}141$ minutes which showed total required time was about same no matter what ingredients were used. As the result of comparing and analyzing the processes, vegetables took less thawing and frying time, but the processing time for vegetables was more complicated since handling time before frying was longer compared to meat. In the important management process by the main groups of fried foods, the frying process was the most cautious cooking process in the category of meat or fish and shellfish used as ingredients. In addition, if vegetables were used as ingredients, storing it after frying was the process that needed the most care.

Studies of Short-Term Variability of Methane in the Moo-Ahn Observatory Site in Korea (무안지역 메탄가스의 단주기적 농도변화에 대한 평가)

  • Choi, Gyoo-Hoon;Youn, Yong-Hoon;Kim, Chang-Hee;Cho, Young-Min;Kim, Ki-Hyeon
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.327-338
    • /
    • 2001
  • In this study, the short-term variability of methane concentrations were investigated over 24-hr scale. The data obtained form the Moo-Ahn (MAN) station located in the western coastal area of Korea were analyzed from various respects to describe its distribution characteristics over short term scale. The MAN data were compared with those obtained from the two major background observatory sites: Point Barrow (Alaska) and Mauna Loa (Hawaii). The mean concentration of methane for the whole study period, when computed using the daily mean values, was found to be 1898${\pm}$85.3ppb (N=812). The mean values for the two comparable sites were observed to be 1832${\pm}$29.6ppb (N=823) for Point Barrow and 1745${\pm}$14.8ppb (N=818) for Mauna Loa. According to the analysis of frequency distribution. the mode value for the MAN area is found to be 1900ppb, but the mean concentration for Point Barrow and Mauna Loa are shown to have relatively low values of 1850 and 1750ppb, respectively. When examined over diurnal scale, the CH$_4$data for the MAN area exhibit a rather consistent trend; CH$_4$level is low during the daytime (after 6:00 A.M) and rises during the nighttime. The findings of the generally enhanced methane concentration in the MAN station may be explained form various respects. One of the most important reasons is that the MAN area is under the influence of various source processes relative to all the other stations under consideration. The short-term distribution patterns for the MAN station are hence characterized not only by the high methane concentration but also by the high oscillation in its CH$_4$concentration level.

  • PDF

Optimum Conditions for the Removal of External Organic Carbon Sources in a Submerged Denitrification Biofilter (탈질 여과조에서 외부 탄소원 제거를 위한 적정 체류 시간과 외부 탄소원 종류 및 질산염 농도에 대한 외부 탄소원의 적정 비율)

  • 오승용;조재윤;윤길하
    • Journal of Aquaculture
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • Denitrification by anaerobic bacteria is one of the most common processes of removing nitrate from recirculating aquaculture systems. This process is affected by many factors such as external carbon sources, hydraulic retention time (HRT), and $COD/NO_3-N$ ratio. Although external organic carbon sources are essential for the denitrification process, these also contribute to increase dissolved organic carbon concentration in recirculating aquaculture systems. So these external organic carbons must be removed from the systems. This study was conducted to find out the optimum operating conditions for the removal of external organic carbons in a submerged denitrification biofilter. Combinations of two external carbon sources (glucose and methanol), two HRT (4- and 8-hour), and four different C:N ratios (3, 4, 5, and 6) were used in this experiment. The removal efficiencies of organic carbon sources at 8-hour HRT were always better than those at 4-hour's (P<0.05). Maximum removal efficiencies were achieved when C:N ratio was 5 in both glucose and methanol. The removal efficiencies of methanol were always better than those of glucose. The maximum removal efficiencies of glucose and methanol were 76.5% and 84.0%, respectively and the removal rates were 223.5 $g/m^2/day$ and 247.1$g/m^2/day$. The maximum removal rates of glucose (290.9 $g/m^2/day$) and methanol (355.6 $g/m^2/day$) were achieved at 4-hour HRT and 5 C:N ratio. But the concentrations of SCOD in the effluent of both glucose ($52.5 mg/\ell$) and methanol ($40.9 mg/\ell$) were too high for rearing fish. Therefore, the optimum operating conditions for the removal of external carbon in a submerged denitrification biofilter were 8-hour HRT and 5 C:N ratio. And methanol showed better efficiency as an external carbon sources.

  • PDF