• Title/Summary/Keyword: source monitoring

Search Result 1,184, Processing Time 0.031 seconds

Monitoring of Lead and Cadmium Contents of Vegetables in Korea (국내 유통 중인 채소류의 납, 카드뮴 함량 모니터링)

  • Shim, Jee-Youn;Oh, Hyun-Suk;Jang, Mi-Ran;Lee, Yoon-Ae;Lee, Ryun-Kyung;Kim, Min-A;Lee, Hyo-Jung;Lee, Sang-Min;Cho, Tae-Youg
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.395-401
    • /
    • 2010
  • This research was carried out as a survey on the contents of Lead (Pb) and Cadmium (Cd) in 5 type agricultural products unestablished safety guideline in Korea. The average levels of Pb: onion 0.010 mg/kg, cucumber 0.018 mg/kg, garlic 0.012 mg/kg, green pepper 0.027 mg/kg, sesame 0.029 mg/kg. The average levels of Cd: onion 0.006 mg/kg, cucumber 0.002 mg/kg, garlic 0.008 mg/kg, green pepper 0.011 mg/kg, sesame 0.024 mg/kg. The present result of this study showed that Pb and Cd contents in the whole samples were less than the maximum residual levels of the codex standard. The levels of exposure assessment for Pb and Cd by intake from vegetables and sesame were merely at $1.3{\times}10^{-4}$(mean) ~ $5.1{\times}10^{-4}$($95^{th}$ percentiles) ${\mu}$g/kg bw/day for Pb, $7.5{\times}10^{-5}$(mean) ~ $3.6{\times}10^{-4}$($95^{th}$ percentiles) ${\mu$}g/kg bw/day for Cd. The data from this research will be valuable source for database construction for science-based safety control and management for the trace metal contamination in food including agricultural products.

Simultaneous Analysis of 13 Pesticides in Groundwater and Evaluation of its Persistent Characteristics

  • Song, Dahee;Park, Sunhwa;Jeon, Sang-Ho;Kim, Ki-In;Hwang, Jong Yeon;Kim, Moonsu;Jo, Hun-Je;Kim, Deok-hyun;Lee, Gyeong-Mi;Kim, Hye-Jin;Kim, Tae-Seung;Chung, Hyen Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.434-451
    • /
    • 2017
  • For this study, groundwater samples for 3 years from 2011 through 2013 were collected at 106 groundwater monitoring site in Korea. These groundwater samples were analyzed for 13 pesticides such as cabofuran, pentachlorobenzene, hexachlorobenzene, simazine, atrazine, lindane (gamma-HCH), alachlor, heptachlor, chlordane (total), endosulfan (1, 2), dieldrin, endrin, 4,4-DDT. The objectives of this study were to determine the detection frequency and their concentrations of 13 pesticides and evaluate the health risk level considering ingestion, inhalation, and skin contact using concentrations of 13 pesticides in groundwater samples. An analysis was used for the simultaneous determination for 13 pesticides using GC-MS. GC-MS was performed on HP-5ms, using helium ($1ml\;min^{-1}$) as carrier gas. The average recoveries of the pesticides were from 92.8% to 120.8%. The limits of detection (LODs) were between $0.004{\mu}g\;L^{-1}$ and $0.118{\mu}g\;L^{-1}$ and the limits of quantification (LOQs) were between $0.012{\mu}g\;L^{-1}$ and $0.354{\mu}g\;L^{-1}$. 106 groundwater wells were selected. 54 wells were from well to monitor background groundwater quality and 52 wells were from well to monitor groundwater quality in industrial or contamination source area. Eight pesticides including pentachlorobenzene, lindane (Gamma-HCH), heptachlor, chlordane (total), Endosulfan (1, 2), dieldrin, endrin, and 4,4-DDT were not detected in groundwater samples. The detection frequency for hexachlorobenzene, alachlor, carbofuran and simazine was 23.4%, 11.4%, 7.3%, and 1.0%, respectively. Atrazine was detected once in 2011. The average concentrations were $0.00423{\mu}g\;L^{-1}$ for carbofuran, $0.000243{\mu}g\;L^{-1}$ for alachlor, $0.00015{\mu}g\;L^{-1}$ for simazine, and $0.00001{\mu}g\;L^{-1}$ for hexachlorobenzene. The detection frequency of hexachlorobenzene was high, but the average concentration was low. In the contaminated groundwater, the detection frequency for hexachlorobenzene, alachlor, carbofuran, simazine and atrazine was 26.1%, 21.3%, 7.1%, 1.9% and 0.3%, respectively. In the uncontaminated groundwater, detection frequency for hexachlorobenzene, carbofuran and alachlor were 20.2%, 7.5%, and 1.9% respectively. Simazine and atrazine were not detected at uncontaminated groundwater wells. According to the purpose of groundwater use, atrazine was detected for agricultural groundwater use. Hexachlorobenzene showed high detection frequency at agricultural groundwater use area where the animal feeding area and golf course area were located. Alachlor showed more than 50% detection frequency at cropping area, pollution concern river area, and golf course area. Atrazine was detected in agricultural water use area. By land use, the maximum detection frequency of alachlor was found near an orchard. For human risk assessment, the cancer risk for the 5 pesticides was between $10^{-7}$ and $10^{-10}$, while the non-cancer risk (HQ value) was between $10^{-4}$ and $10^{-6}$. For conclusion, these monitoring study needs to continue because of the possibility of groundwater contamination based on various purpose of groundwater use.

Monitoring of Heavy Metals Migrated from Polylactide (PLA) Food Contact Materials in Korea (국내 유통 폴리락타이드(PLA) 식품용 기구 및 용기·포장의 중금속 이행량 모니터링)

  • Kim, Hyeonuk;Park, So-Yeon;Jo, Ye-Eun;Park, Yongchjun;Park, Se-Jong;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.2
    • /
    • pp.102-109
    • /
    • 2018
  • In the present study, a variety of polylactide (PLA) articles (n = 211) were tested for migration of lead (Pb), cadmium (Cd) and arsenic (As) into the food simulant (4% v/v acetic acid). Pb, Cd, and As were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Migration tests were performed at $70^{\circ}C$ and $100^{\circ}C$ for 30 min. The amounts of Pb, Cd, and As increased at $100^{\circ}C$ for 30 min compared with levels at $70^{\circ}C$. However, the migration at both conditions was very low. The maximum level of Pb at $100^{\circ}C$ for 30 min corresponded to 1% of the migration limit. The estimated daily intakes (EDI) based on safety evaluation ranged from $2.5{\times}10^{-5}$ to $2.0{\times}10^{-3}{\mu}g/kg\;bw/day$ for Pb, Cd, and As. The EDI calculated from migration of Pb at $100^{\circ}C$ for 30 min in PLA was the maximum value, $2.0{\times}10^{-3}{\mu}g/kg\;bw/day$, which corresponded to 0.055% of provisional tolerable weekly intake (PTWI, $25{\mu}g/kg\;bw/week$). The data from this study represent a valuable source for science-based safety control and management of hazardous heavy metals migrating from polylactide food contact materials.

Water Quality Monitoring of the Ecological Pond Constructed by LID Technique in Idle Space (유휴 공간에 LID 기법을 활용한 생태연못의 수질 모니터링)

  • Ahn, Chang-Hyuk;Song, Ho-Myeon;Park, Joon-Ha;Park, Jum-Ok;Park, Jae-Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.674-684
    • /
    • 2018
  • The purpose of this study is to construct ecological pond using LID technique in order to create naturally comfortable community space in urban idle space. The specification of the ecological pond is $110m^2$ of surface area, $0.45{\pm}0.02m$ of average depth, and bed material is composed of gravel (diameter ${\leq}60mm$), sand (diameter ${\leq}2mm$) and bentonite. Rainfall and water depth monitoring were conducted to determine the annual characteristics of inflow of the water for the ecological pond, result of total rainfall was 1,287 mm and showed a seasonal imbalance that accounted for 71.3% (918 mm) during July to August, but the annual mean water depth was kept constant at $0.45{\pm}0.02m$ due to the secondary water source. Annual trends of basic water quality showed a significant changes according to the season, such as water temperature ($5.2{\sim}28.8^{\circ}C$), DO (5.0 ~ 13.8 mg/L), EC ($113{\sim}265{\mu}S/cm$). BOD, COD, TN, and TP in physicochemical water quality tended to increase after October, but the ion parameters such as $NH_3$ and $PO_4{^{3-}}$ were generally low. Phytoplankton indicators Chl-a and BGA (blue green algae) showed a sharp increase from July to August, and green algae (Selenastrum bibraianum, Pediastrum boryanum etc.) and filamentous blue green algae (Phormidium sp.) emerged as a dominant species. The ion parameters ($F^-$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were strongly correlated with the $Cl^-$ as a conservative substance (R=0.70~0.97, p<0.05). Water quality was influenced by the ambient environment such as seasonal changes or rainfall, and it was closely related to fluctuation of the inflow of the water. In the future, it is necessary to consider ecological connections by referring to the characteristics surveyed in this study in order to effectively manage the water quality and biodiversity of the ecological pond in idle space.

Monitoring of Nitrogen and Phosphorus from Submerged Plants in Boknae Reservoir around Juam Lake (주암호 복내 저수구역내 침수 자생식물의 질소 및 인 모니터링)

  • Kang, Se-Won;Seo, Dong-Cheol;Lee, Sang-Gyu;Seo, Young-Jin;Park, Ju-Wang;Choi, Ik-Won;Park, Jong-Hwan;Lim, Byung-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • BACKGROUND: Eutrophication occurs occasionally in reservoirs around lake in summer and early autumn. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during rainy season. To improve water quality of water supply source in Boknae reservoir around Juam lake, characteristics of nutrient(N, P) uptake and release by submerged plants were investigated. METHODS AND RESULTS: In order to establish the management plan of submerged plants in Boknae reservoir around Juam lake, water level, rainfall, flooding and non-flooding areas, biomass of dominant plants, contents of nitrogen and phosphorus were investigated during 7 months(August, 2010 through February, 2011). Dominant plants were Miscanthus sacchariflorus(MISSA) and Carex dimorpholepis(CRXDM) in Boknae reservoir. Total plant area of Boknae reservoir in August, 2010 was 987,872 $m^2$. In Boknae reservoir, flooding occurred from August until February caused by rainfall during rainy season. The total amounts of nitrogen and phosphorus uptakes by MISSA were 247 and 22 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus uptakes were 11,340 and 1,231 kg/total reservoir area, respectively. The total amounts of nitrogen and phosphorus residues by MISSA were 34 and 11 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus residues were 491 and 68 kg/total reservoir area, respectively. CONCLUSION(S): Total amounts of nitrogen and phosphorus releases in Boknae reservoir were 12,212 and 1,324 kg/total reservoir area, respectively. The results demonstrate that total nitrogen and total phosphorus in water were strongly influenced by submerged plants. Therefore, management plan for submerged plants during rainy season will be needed to improve water quality of water supply source in Boknae reservoir around Juam lake.

Classification by Zooplankton Inhabit Character and Freshwater Microbial Food Web: Importance of Epiphytic Zooplankton as Energy Source for High-Level Predator (동물플랑크톤의 서식 특성에 따른 분류와 먹이망: 상위포식자의 에너지원으로서 부착성 동물플랑크톤의 중요성)

  • Choi, Jong-Yun;La, Geung-Hwan;Jeong, Kwang-Seuk;Kim, Seong-Ki;Chang, Kwang-Hyeon;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.444-452
    • /
    • 2012
  • We conducted a comprehensive monitoring for freshwater food web in a wetland system (Jangcheok Lake), from May to October, 2011. Monthly sampling for zooplankton, fish as well as organic matters, was implemented. In order to understand the food web structure and energy flow, we applied stable isotope analysis to the collected samples, based on ${\delta}^{13}C$ and ${\delta}^{15}N$ values of epiphytic particulate organic matter(EPOM) and particulate organic matter (POM), epiphytic and planktonic zooplankton, fish (Lepomis macrochirus). In the study site, epiphytic and planktonic zooplankton was 24 and 30 species, respectively, and coincidence species between epiphytic and planktonic zooplankton were 20 species. Epiphytic zooplankton were more abundant during the spring and early summer (May to July); however, planktonic zooplankton were more abundant during the autumn (September to October) season. Stable isotope analysis revealed that fish and epiphytic zooplankton had seasonal variations on their food sources. EPOM largely contributed epiphytic zooplankton in spring (May), but increasing contribution of POM in autumn (September) was detected. However, planktonic zooplankton depended on only POM in both seasons. Fish utilized both epiphytic and planktonic zooplankton, but small sized (1~3 cm), fish preferred epiphytic zooplankton, where as larger sized (4~7 cm) fish tended to consume planktonic zooplankton, and epiphytic zooplankton had important role in energy transfer. This pattern was clear when results of spring and autumn stable isotope analysis were compared. From the results of this study, we confirmed that wetlands ecosystem supported various epiphytic and planktonic zooplankton species, they depend on other food items, respectively. L. macrochirus also showed a difference of food source according to the body size, they depend on seasonal density change of zooplankton. In particular, epiphytic zooplankton was very important for growth and development of young fish in the spring.

Statistically Analyzed Effects of Coal-Fired Power Plants in West Coast on the Surface Air Pollutants over Seoul Metropolitan Area (통계적 기법을 활용한 서해안 화력발전소 오염물질 배출에 따른 수도권 지표면 대기오염농도 영향의 분석)

  • Ju, Jaemin;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.549-560
    • /
    • 2019
  • The effects of the coal-fired power plant emissions, as the biggest point source of air pollutants, on spatiotemporal surface air pollution over the remote area are investigated in this study, based on a set of date selection and statistical technique to consider meteorological and geographical effects in the emission-concentration (source-receptor) relationship. We here proposed the sophisticated technique of data processing to separate and quantify the effects. The data technique comprises a set of data selection and statistical analysis procedure that include data selection criteria depending on meteorological conditions and statistical methods such as Kolmogorov-Zurbenko filter (K-Z filter) and empirical orthogonal function (EOF) analysis. The data selection procedure is important for filtering measurement data to consider the meteorological and geographical effects on the emission-concentration relationship. Together with meteorological data from the new high resolution ECMWF reanalysis 5 (ERA5) and the Korea Meteorological Administration automated surface observing system, air pollutant emission data from the telemonitoring system (TMS) of Dangjin and Taean power plants as well as spatio-temporal air pollutant concentrations from the air quality monitoring system are used for 4 years period of 2014-2017. Since all the data used in this study have the temporal resolution of 1 hour, the first EOF mode of spatio-temporal changes in air pollutant concentrations over the Seoul metropolitan area (SMA) due to power plant emission have been analyzed to explain over 97% of total variability under favorable meteorological conditions. It is concluded that SO2, NO2, and PM10 concentrations over the SMA would be decreased by 0.468, 1.050 ppb, and 2.045 ㎍ m-3 respectively if SO2, NO2, and TSP emissions from Dangjin power plant were reduced by 10%. In the same way, the 10% emission reduction in Taean power plant emissions would cause SO2, NO2, and PM10 decreased by 0.284, 0.842 ppb, and 1.230 ㎍ m-3 over the SMA respectively. Emissions from Dangjin power plant affect air pollution over the SMA in higher amount, but with lower R value, than those of Taean under the same meteorological condition.

Analysis of Distribution Characteristics of Flowrate and Water Quality in Tributary at Chungcheongnam-do (충청남도 지류하천의 유량 및 수질 분포특성 분석)

  • Park, Sang-Hyun;Moon, Eun-Ho;Choi, Jeong-Ho;Cho, Byung-Wook;Kim, Hong-Su;Jeong, Woo-Hyeok;Yi, Sang-Jin;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.739-747
    • /
    • 2011
  • The major 81 tributaries in Chungcheongnam-do were monitored for flowrate and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. The value of flowrate in the tributaries at Nonsancheon catchment at the Geum-River watershed and Gokgyocheon, Muhancheon, Sapgyocheon at the Sapgyo-Reservoir watershed, which is located in the southern and northern area in Chungcheongnam-do, was relatively greater than the other watersheds. The concentration of water pollutants regardless of water quality parameters in Nonsancheon catchment at the Geum-River watershed, Gokgyocheon catchment at the Sapgyo-Reservoir watershed and the Anseongcheon watershed, which have a dense source of pollution, were higher than the other watersheds. However, 64 percent of the tributaries at the Geum-River watershed, 45 percent of tributaries at the Sapgyo-Reservoir watershed, 26 percent of tributaries at the Geum-River watershed all satisfied the Class II regulations in the Framework Act on Environment Policy, but all of the tributaries located in the Anseongcheon watershed exceeded the Class II regulations. Therefore, the policy for improving the water quality of the tributary in Chungcheongnam-do should be established in the following order: Anseongcheon, Seohae, Sapgyo-Reservoir watersheds. Consequently, the tributary catchment for improving water quality, which has a large flowrate and a high concentration of water pollutants, was selected at Ganggyeongcheon, Geumcheon, Nonsancheon, Seokseongcheon, Seungcheoncheon, Jeongancheon, Jeungsancheon (so far Geum-River watershed), Gokgyocheon, Namwoncheon, Maegokcheon, Muhancheon, Sapgyocheon Oncheoncheon, Cheonancheon (so far Sapgyo-Reservoir watershed), Gwangcheoncheon, Dangjincheon, Daecheoncheon, Dodangcheon, Waryongcheon, Cheongjicheon, Pangyocheon, Heungincheon (so far Seohae watershed), Dunpocheon, Seonghwancheon, Ipjangcheon (so far Anseongcheon watershed). The plans as installation of environmental facilities to reduce the source of pollution for improving the water quality of these tributary catchments should be urgently established and implemented.

Pollutant Loading Estimate from Yongdam Watershed Using BASINS/HSPF (BASINS/HSPF를 이용한 용담댐 유역의 오염부하량 산정)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.187-197
    • /
    • 2006
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency(EPA) was applied to the Yongdam Watershed to examine its applicability for loading estimates in watershed scale. It was run under BASINS (Better Assessment Science for Integrating point and Nonpoint Sources) program, and the model was validated using monitoring data of 2002 ${\sim}$ 2003. The model efficiency of runoff was high in comparison between simulated and observed data, while it was relatively low in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources and land uses intermixed in the watershed. The estimated pollutant load from Yongdam watershed for BOD, T-N and T-P was 1,290,804 kg $yr{-1}$, 3,753,750 kg $yr{-1}$ and 77,404 kg $yr{-1}$,respectively. Non-point source (NPS) contribution was high showing BOD 57.2%, T-N 92.0% and T-P 60.2% of the total annual loading in the study area. The NPS loading during the monsoon rainy season (June to September) was about 55 ${\sim}$ 72% of total NPS loading, and runoff volume was also in a similar rate (69%). However, water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. Overall, the BASINS/HSPF was applied to the Yongdam watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading in watershed scale.

Occurrence and Distribution of Selected Veterinary Antibiotics in Soils, Sediments and Water Adjacent to a Cattle Manure Composting Facility in Korea (국내 우분 퇴비화 시설 인근 농경지 및 수계 중 Tetracycline 및 Sulfonamide 계열 항생물질의 분포특성)

  • Lim, Jung-Eun;Kim, Sung-Chul;Lee, Hyeon-Yong;Kwon, Oh-Kyung;Yang, Jae-E.;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.845-854
    • /
    • 2009
  • There has been increased concern regarding the release of antibiotics to different environmental compartments due to the possibility of the development of antibiotic resistant bacteria. However, limited information is available regarding the occurrence, fate, and transport of antibiotics in Korea in both the aqueous phase and in solid phases such as sediment and soil. Therefore, this study was conducted to monitor the concentration of released antibiotics in surface water, sediment, and soil adjacent to a cattle manure composting facility in Korea. Specifically, the following six antibiotics were monitored: tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC), sulfamethazine (SMT), sulfamethoxazole (SMX), and sulfathiazole (STZ). To extract and quantify the antibiotics from different environmental compartments, solid phase extraction (SPE) and high performance liquid chromatography mass spectrometry (HPLC/MS) techniques were adopted. The concentration of the six antibiotics ranged from below the detection limit (BDL) to 0.71 ${\mu}g$/L in surface water, from BDL to 27.61 ${\mu}g$/L in sediment, and from 0.12 to 157.33 ${\mu}g$/L in soil. In addition, higher concentrations of antibiotics were observed in surface water and sediment at locations closer to the composting facility indicating that composting is the source of the antibiotics found in the environment. Furthermore, higher concentrations of antibiotics were observed in the solid phase (sediment and soil) than the aqueous phase. These findings indicate that the possibility of antibiotic resistant bacteria is increased because such bacteria are more stable in the solid phase. Overall, longterm monitoring of the aqueous phase and solid phase is necessary to gain a better understanding of the impact of antibiotics from source on the environment in Korea.