• Title/Summary/Keyword: source material

Search Result 2,566, Processing Time 0.039 seconds

Improvement of ITO etching uniformity in a large area plasma source (대면적 플라즈마 소스에서의 ITO 식각균일도 향상)

  • Kim, C.W.;Jo, S.B.;Kim, B.J.;Park, S.G.;O, B.H.;Lee, J.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.145-148
    • /
    • 2001
  • A large area plasma source using parallel $2{\times}2$ ICP antennas showed improved etching uniformity by the E-ICP operation. ITO etching process with $CH_4$ gas chemistry is optimized with the DOE (Design of Experiment) based on Taguchi method. Various methane ratios in methane and argon mixture are compared to confirm the effect of polymerization. The analysis shows that the effect of bias power is the largeset. We obtained higher ITO etching rate and better uniformity on $350{\times}300mm$ substrate at the 50Hz magnetization frequency of the E-ICP operation technique,

  • PDF

Comparison of BP and SOM as a Classification of PD Source (부분방전원의 분류에 있어서 BP와 SOM의 비교)

  • 박성희;강성화;임기조
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.1006-1012
    • /
    • 2004
  • In this paper, neural networks is studied to apply as a PD source classification in XLPE power cable specimen. Two learning schemes are used to classification; BP(Back propagation algorithm), SOM(self organized map - kohonen network). As a PD source, using treeing discharge sources in the specimen, three defected models are made. And these data making use of a computer-aided discharge analyser, statistical and other discharge parameters is calculated to discrimination between different models of discharge sources. And a]so these distribution characteristics are applied to classify PD sources by two scheme of the neural networks. In conclusion, recognition efficiency of BP is superior to SOM.

The electrical and optical properties of Xe plasma in flat lamp (평판형 광원에서 제논(Xe) 플라즈마의 전기적 광학적 특성 연구)

  • Pack, Gwang-Hyeon;Yang, Jong-Kyung;Lee, Jong-Chan;Chio, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.60-64
    • /
    • 2005
  • Discharge of the flat lamp lighting source research are requested very much. For improving brightness, life time, efficiency of flat lamp, plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important, distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density measured with single langmuir probe in flat lamp, we tested the discharge from 100 Torr to 300 Torr pressure, the Pulse is rectangular pulse with frequency 20kHz and Duty ratio 20%. Resultly, electron temperature decreases and electron density increase as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Variable properties thermopiezoelectric problem under fractional thermoelasticity

  • Ma, Yongbin;Cao, Liuchan;He, Tianhu
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The dynamic response of a finite length thermo-piezoelectric rod with variable material properties is investigated in the context of the fractional order theory of thermoelasticity. The rod is subjected to a moving heat source and fixed at both ends. The governing equations are formulated and then solved by means of Laplace transform together with its numerical inversion. The results of the non-dimensional temperature, displacement and stress in the rod are obtained and illustrated graphically. Meanwhile, the effects of the fractional order parameter, the velocity of heat source and the variable material properties on the variations of the considered variables are presented, and the results show that they significantly influence the variations of the considered variables.

A Study of the Change in Visual Perceptions of Finishing Materials using Lightings with the CG Experiment Method[1]

  • Seo, Ji-Eun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.1-8
    • /
    • 2010
  • This study analyzes whether a person's visual perception differs according to the kinds of light source. Evaluations of the effects of space, color-tone and texture perception revealed that different kinds of light sources change the perception of finishing material. The perception from directly attached lamps was compared to an environment with both directly attached lamps and supplemental lighting. We found the perception changed with changes in the types of supplemental light source We compared the mean value of each perception and found that perceptions change most when incandescent lights were followed by halogen. Thus, one should account for the changes in perception that occur as a result of these changes.

Improvement of 170 etching uniformity in a large area plasma source (대면적 플라즈마 소스에서의 ITO 식각균일도 향상)

  • 김진우;조수범;김봉주;박세근;오범환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.145-148
    • /
    • 2001
  • A large area plasma source using parallel 2x2 ICP antennas showed improved etching uniformity by the E-ICP operation. ITO etching process with CH$_4$ gas chemistry is optimized with the DOE(Design of Experiment) based on Taguchi method. Various methane ratios in methane and argon mixture are compared to confirm the effect of polymerization. The analysis shows that the effect of bias power is the largeset. We obtained higher ITO etching rate and better uniformity on 350x300mm substrate at the 50Hz magnetization frequency of the E-ICP operation technique.

  • PDF

Electrical and Optical Properties of In-doped CdS Films Prepared by Vacuum Evaporation (진공증착법으로 제조한 CdS:In 박막의 전기 및 광학적 특성)

  • 김시열;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.101-104
    • /
    • 1992
  • In-doped CdS thin films have been deposited at 150$^{\circ}C$ by simultaneous thermal evaporation of CdS and In. Deposition rate and film thickness were 8A/sec and about 1um, respectively. Indium doping concentration of films varied as Indium source temperature from 500$^{\circ}C$ to 700˚. Properties of In-CdS films have been investigatied by measurements of electrical resistivity, Hall effect, X-ray diffraction and optical trasmission spectra. The conductivity of these films was always n-type. The resistivity, carrier concentration, mobility and optical band gap dependence on Indium source temperature are reported. Carrier concentration and mobility of In-CdS films increased with increasing Indium source temperature: then they decreased. The variation of the optical band gap of In-CdS thin films are related to carrier concentration.

  • PDF

Numerical Analysis of Discharge in Wire ion Plasma Source (입자법을 이용한 와이어.이온.플라즈마원의 해석)

  • 송태헌;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.369-372
    • /
    • 1997
  • Wire Ion Plasma Source (WIPS) is a plasma device which has a thin wire anode, a coaxially-set cylindrical cathode and electrodes located in both ends of the cylinder. The potential between the anode and cathode changes logarithmically by this electrode configuration. This electrode configuration enables high-density plasma to produce even at a low anode voltage. Since the electrode configuration is axially symmetric and long. plasma with axially uniform number density can be produced. Using particle-in-cell(PIC) and Monte Carlo collision(MCC), we investigate the traiectory of electrons and the characteristics of D.C. discharge in Wire ton Plasma Source.

  • PDF

Formation of Dielectric Carbon Nitride Thin Films using a Pulsed Laser Ablation Combined with High Voltage Discharge Plasma (펄스 레이저 애블레이션이 결합된 고전압 방전 플라즈마 장치를 이용한 유전성 질화탄소 박막의 합성)

  • 김종일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.641-646
    • /
    • 2003
  • The dielectric carbon nitride thin films were deposited onto Si(100) substrate using a pulsed laser ablation of pure graphite target combined with a high voltage discharge plasma in the presence of a N$_2$ reactive gas. We calculated dielectric constant, $\varepsilon$$\_$s/, with a capacitance Schering bridge method. We investigated the influence of the laser ablation of graphite target and DC high voltage source for the plasma. The properties of the deposited carbon nitride thin films were influenced by the high voltage source during the film growth. Deposition rate of carbon nitride films were increased drastically with the increase of high voltage source. Infrared absorption clearly shows the existence of C=N bonds and C=N bonds. The carbon nitride thin films were observed crystalline phase confirmed by x-ray diffraction data.

Electrical Properties of Plasma According to Gas Pressure and RF Power of Xe-Inductively Coupled Plasma (유도결합형 제논의 가스압력 및 RF전력에 따른 플라즈마의 전기적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.43-47
    • /
    • 2006
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma (ICP). As results at several dependences of 20~100mTorr Xenon pressure, the brightness of discharge tube was higher (4,900 $cd/m^2$) than other conditions when Xe pressure was 20mTorr and RF power was 200W. In that case, the electron temperature and density were 3.58eV and $3.56{\times}10^{12}cm^2$, respectively. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF