• Title/Summary/Keyword: sound vibration

Search Result 2,251, Processing Time 0.024 seconds

Importance-Performance Analysis about Early Mobilization after Abdominal Surgery Patients in Surgical Ward Nurses (복부수술 환자의 조기운동에 대한 외과병동 간호사의 중요도-수행도 분석)

  • Kim, Bo Eun;Choi, Hye-Ran
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.567-575
    • /
    • 2021
  • This study was aimed to identify surgical ward nurses' importance-performance awareness toward early mobilization after abdominal surgery patients. The date were collected from 162 nurses and the importance and performance of early mobilization were analyzed by the IPA method. The collected data were analyzed using the SPSS/WIN 25.0 by implementing descriptive statistics, independent t-test, paired t-test, and ANOVA. Early mobilization was divided into exercise of pulmonary complications and early ambulation. As a result of the study, the areas requiring concentration were 'check risk of aspiration', and areas requiring improvement were 'oral care', 'check lung sound', 'percussion/vibration', 'suction', and 'reinforcement exercise in bed'. Therefore, each item of early mobilization is recommended to reduce the gap between importance and performance in clinical care.

DentalVibe versus lignocaine hydrochloride 2% gel in pain reduction during inferior alveolar nerve block in children

  • Menni, Alekhya Chowdary;Radhakrishna, Ambati Naga;Prasad, M. Ghanashyam
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.6
    • /
    • pp.397-402
    • /
    • 2020
  • Background: Inferior alveolar nerve block (IANB) is the most common, painful, and anxiety-provoking procedure involving needle insertion for anesthetic solution deposition. DentalVibeⓇ (DV) delivers vibration at a sustained frequency as a counter-stimulation to the site of injection, thereby alleviating pain. The aim of this study was to evaluate and compare the effectiveness of DV and lignocaine hydrochloride 2% gel (Lox 2% jelly) in pain reduction during IANB in children. Methods: A split-mouth randomized clinical trial was designed with a sample of 60 children (age, 6 to 12 years) requiring bilateral IANB for various dental procedures; DV was used while administering IANB and Lox 2% jelly was used as the topical anesthetic before administering IANB at subsequent appointments. During both appointments, pain perception was measured using the sound, eye, motor (SEM) scale and Wong-Baker faces pain rating scale (WBFPRS); oxygen saturation (SpO2) and pulse rate were measured using a pulse oximeter before, during, and after the IANB procedure. The obtained values were tabulated and subjected to statistical analysis. Wilcoxon test was used for intergroup comparison, and Friedman test, for intragroup comparison of measured variables at different treatment phases. Results: The medians and interquartile ranges of the WBFPRS scores recorded during the IANB procedure for DV and Lox 2% jelly were 2 (2-4) and 2 (0-2), respectively (P < 0.05). The SEM scale scores, mean SpO2, and pulse rate did not show any significant differences during the IANB procedure between both treatments. Conclusion: Both DV and Lox 2% jelly were found to be effective in pain reduction during IANB in children.

Beat control method of Korean bells using artificial dumshoi (인공 덤쇠를 이용한 한국종의 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Jae Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.192-200
    • /
    • 2021
  • Korean bell is a macroscopically axi-symmetrical structure, but has a slight asymmetry due to complex patterns and casting irregularity. Small asymmetry separates one vibration mode into a mode pair with slight frequency difference. The mode pair interferes and creates a beat. The vivid beat with an appropriate period makes the bell sound magnificent and lively feeling. In this study, we propose a method to make the vivid beat using artificial dumshoi. This method creates the vivid beat by designing artificial dumshoi that overwhelms the bell asymmetry. To this end, the asymmetry of Korean bell is quantified by analyzing the beat period data of a number of Korean bells cast in modern times. Based on the measured beat period data, the magnitude of asymmetry is quantified using an equivalent bell model and artificial dumshoi is applied. The movement of mode pair by dumshoi is predicted through finite element analysis. Finally, a design example of the artificial dumshoi for clear beat is introduced.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

A semi-analytical and numerical approach for solving 3D nonlinear cylindrical shell systems

  • Liming Dai;Kamran Foroutan
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.461-473
    • /
    • 2023
  • This study aims to solve for nonlinear cylindrical shell systems with a semi-analytical and numerical approach implementing the P-T method. The procedures and conditions for such a study are presented in practically solving and analyzing the cylindrical shell systems. An analytical model for a nonlinear thick cylindrical shell (TCS) is established on the basis of the stress function and Reddy's higher-order shear deformation theory (HSDT). According to Reddy's HSDT, Hooke's law in three dimensions, and the von-Kármán equation, the stress-strain relations are developed for the thick cylindrical shell systems, and the three coupled nonlinear governing equations are thus established and discretized as per the Galerkin method, for implementing the P-T method. The solution generated with the approach is continuous everywhere in the entire time domain considered. The approach proposed can also be used to numerically solve and analyze the nonlinear shell systems. The procedures and recurrence relations for numerical solutions of shell systems are presented. To demonstrate the application of the approach in numerically solving for nonlinear cylindrical shell systems, a specific nonlinear cylindrical shell system subjected to an external excitation is solved numerically. In numerically solving for the system, the present approach shows higher efficiency, accuracy, and reliability in comparison with that of the Runge-Kutta method. The approach with the P-T method presented is practically sound especially when continuous and high-quality numerical solutions for the shell systems are considered.

Model Tests on a Plastic Pipe Pile for the Analysis of Noise, Energy Transfer Effect and Bearing Capacity due to Hammer Cushion Materials (해머 쿠션 재질에 따른 모형말뚝의 소음, 에너지 전달효율 및 지지력 분석)

  • Lim, Yu-Jin;Hwang, Kwang-Ho;Park, Young-Ho;Lee, Jin-Gul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.33-43
    • /
    • 2006
  • Driving tests using model plastic piles with different hammer cushion materials were performed in order to evaluate the efficiency of energy transfer ratio from the hammer, degree of vibration of the surrounding ground and noise due to impacting. A small pile driving analyzer (PDA) was composed using straingages and Hopkinson bar which is measuring force signal and pile-head velocity. The hammer cushion (cap block) materials used for the model driving tests were commercial Micarta, plywood, polyurethane, rubber (SBR) and silicone rubber. The highest energy transfer ratio was obtained from Micarta in the same soil and driving conditions. Micarta was followed by polyurethane, plywood, rubber and silicone in descending order. The more efficient energy transfdr ratio of the hammer cushion materials became, the bigger average noisy (sound) level was found. In addition, Micarta and polyurethane provided bigger bearing capacities than other materials compared in the same soil and driving conditions in which the static loading tests were performed at the end of driving.

Acceleration signal-based haptic texture recognition according to characteristics of object surface material using conformer model (Conformer 모델을 이용한 물체 표면 재료의 특성에 따른 가속도 신호 기반 햅틱 질감 인식)

  • Hyoung-Gook Kim;Dong-Ki Jeong;Jin-Young Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.214-220
    • /
    • 2023
  • In this paper, we propose a method to improve texture recognition performance from haptic acceleration signals representing the texture characteristics of object surface materials by using a Conformer model that combines the advantages of a convolutional neural network and a transformer. In the proposed method, three-axis acceleration signals generated by impact sound and vibration are combined into one-dimensional acceleration data while a person contacts the surface of the object materials using a tool such as a stylus , and the logarithmic Mel-spectrogram is extracted from the haptic acceleration signal similar to the audio signal. Then, Conformer is applied to the extracted the logarithmic Mel-spectrogram to learn main local and global frequency features in recognizing the texture of various object materials. Experiments on the Lehrstuhl für Medientechnik (LMT) haptic texture dataset consisting of 60 materials to evaluate the performance of the proposed model showed that the proposed method can effectively recognize the texture of the object surface material better than the existing methods.

Communication performance of selective combining frequency diversity with maximum likelihood estimation in underwater multipath frequency selective channels (수중 다중경로 주파수 선택적 채널에서 최대우도추정을 적용한 선택적합성 주파수 다이버시티의 통신 성능)

  • Lee, Chaehui;Park, Kyu-Chil;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • In this paper, we evaluate the underwater frequency diversity communication performance of Selective Combination (SC) using Maximum Likelihood Estimation (MLE). In an underwater multipath frequency selective channel, destructive interference fading due to delay spread of a received signal affects the increase in error and Signal to Noise Ratio (SNR) variability of an underwater acoustic communication. Selective Combination frequency diversity using a single sensor is applied as a transmission performance improvement technique according to the frequency selectivity of a channel. In the sea experiment applying MLE for SC decision value extraction, we evaluate the performance of SC frequency diversity and MLE-SC frequency diversity. In experiment result, we confirm through experiment that the Bit Error Rate (BER) is relatively lower when the decision value extracted through MLE-SC is applied than when the SC decision value is fixed.

Leakage Detection Method in Water Pipe using Tree-based Boosting Algorithm (트리 기반 부스팅 알고리듬을 이용한 상수도관 누수 탐지 방법)

  • Jae-Heung Lee;Yunsung Oh;Junhyeok Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Losses in domestic water supply due to leaks are very large, such as fractures and defects in pipelines. Therefore, preventive measures to prevent water leakage are necessary. We propose the development of a leakage detection sensor utilizing vibration sensors and present an optimal leakage detection algorithm leveraging artificial intelligence. Vibrational sound data acquired from water pipelines undergo a preprocessing stage using FFT (Fast Fourier Transform), followed by leakage classification using an optimized tree-based boosting algorithm. Applying this method to approximately 260,000 experimental data points from various real-world scenarios resulted in a 97% accuracy, a 4% improvement over existing SVM(Support Vector Machine) methods. The processing speed also increased approximately 80 times, confirming its suitability for edge device applications.

A Numerical Method for Analysis of the Sound and Vibration of Waveguides Coupled with External Fluid (외부 유체와 연성된 도파관의 진동 및 소음 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.448-457
    • /
    • 2010
  • Vibrations and wave propagations in waveguide structures can be analysed efficiently by using waveguide finite element (WFE) method. The WFE method only models the 2-dimensional cross-section of the waveguide with finite elements so that the size of the model and computing time are much less than those of the 3-dimensional FE models. For cylindrical shells or pipes which have simple cross-sections, the external coupling with fluids can be treated theoretically. For waveguides of complex cross-sectional geometries, however, numerical methods are required to deal with external fluids. In this numerical approach, the external fluid is modelled by the boundary elements (BEs) and connected to WFEs. In order to validate this WFE/BE method, a pipe submerged in water is considered in this study. The dispersion diagrams and point mobilities of the pipe simulated are compared to those that theoretically obtained. Also the acoustic powers radiated from the pipe are predicted and compared in both cases of air and water as an external medium.