• Title/Summary/Keyword: sound vibration

Search Result 2,252, Processing Time 0.03 seconds

The Acoustic Changes of Voice after Uvulopalatopharyngoplasty (구개인두성형술 후 음성의 음향학적 변화)

  • Hong, K.H.;Kim, S.W.;Yoon, H.W.;Cho, Y.S.;Moon, S.H.;Lee, S.H.
    • Speech Sciences
    • /
    • v.8 no.2
    • /
    • pp.23-37
    • /
    • 2001
  • The primary sound produced by the vibration of vocal folds reaches the velopharyngeal isthmus and is directed both nasally and orally. The proportions of the each component is determined by the anatomical and functional status of the soft palate. The oral sounds composed of oral vowels and consonants according to the status of vocal tract, tongue, palate and lips. The nasal sounds composed of nasal consonants and nasal vowels, and further modified according to the status of the nasal airway, so anatomical abnormalities in the nasal cavity will influence nasal sound. The measurement of nasal sounds of speech has relied on the subjective scoring by listeners. The nasal sounds are described with nasality and nasalization. Generally, nasality has been assessed perceptually in the effect of maxillofacial procedures for cleft palate, sleep apnea, snoring and nasal disorders. The nasalization is considered as an acoustic phenomenon. Snoring and sleep apnea is a typical disorders due to abundant velopharynx. The sleep apnea has been known as a cessation of breathing for at least 10 seconds during sleep. Several medical and surgical methods for treating sleep apnea have been attempted. The uvulopalatopharyngoplasty(UPPP) involves removal of 1.0 to 3.0 cm of soft palate tissue with removal of redundant oropharyngeal mucosa and lateral tissue from the anterior and sometimes posterior faucial pillars. This procedure results in a shortened soft palate and a possible risk following this surgery may be velopharyngeal malfunctioning due to the shortened palate. Few researchers have systematically studied the effects of this surgery as it relates to speech production. Some changes in the voice quality such as resonance (nasality), articulation, and phonation have been reported. In view of the conflicting reports discussed, there remains some uncertainty about the speech status in patients following the snoring and sleep apnea surgery. The study was conducted in two phases: 1) acoustic analysis of oral and nasal sounds, and 2) evaluation of nasality.

  • PDF

A Study on Structural Safety and Advanced Efficiency for a Drywell Type Reducer (누유방지형 감속기의 구조적 안전성 및 토크효율 향상에 관한 연구)

  • Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1399-1406
    • /
    • 2011
  • The reducer of the mixer is one of the main parts of the processor used for water and wastewater treatment. In this study, an advanced reducer with a drywell structure was developed in order to prevent oil leakage during operation in the field. During the development of the advanced reducer prototype, a mockup, a metal mold, and a cast were made using CAD and a CNC machine. The structural safety of the reducer prototype's lower housing (drywell structure) was checked using the ALGOR commercial FEM analysis code, which yielded a von Mises stress of about 123 N/mm2, which is below the yield stress of 250 N/$mm^2$, and a natural frequency of about 650-700 Hz. In addition, the torque transmission efficiency for the advanced prototype was 95.87%, which is about 8% more than that found in a previous study, 88.45%, and the sound level was below 75 dB. Furthermore, no oil leakage or abnormal sound or vibration occurred. Therefore, an optimally designed advanced reducer prototype has been successfully developed.

Electronic Stethoscope using PVDF Sensor for Wireless Transmission of Heart and Lung Sounds (PVDF를 이용한 청진 센서 및 심폐음 무선 전송이 가능한 전자 청진기)

  • Im, Jae Joong;Lim, Young Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.57-63
    • /
    • 2012
  • Effective use of stethoscope is very important for primary clinical diagnosis for the increasing cardiovascular and respiratory disease. This study developed the contact vibration sensor using piezopolymer film which minimizes the ambient noise, and signal processing algorithm was applied for providing better auscultation sounds compare to the existing electronic stethoscopes. Especially, low frequency heart sounds were acquired without distortion, and the quality of lung sounds were improved. Also, auscultating sounds could be transmitted using bluetooth, which made possible to be used for the u-healthcare environment. Results of this study, auscultation of heart and lung sounds, could be applied to the convergence industry of medical and information communication technology through remote diagnosis.

Equivalent Circuit Modelling of FFR Transducer Array for Sonar System Design (소나 시스템 설계를 위한 FFR 트랜스듀서 어레이의 등가회로 모델링)

  • Kim, In-Dong;Choi, Seung-Soo;Lee, Haksue;Lee, Seung Woo;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.629-635
    • /
    • 2017
  • Free-Flooded Ring (FFR) transducer array for use in Sonar system can be driven with large amplitude in a wide frequency band due to its structural characteristics, in which two resonances of a ring mode (1st radial mode) and an inner cavity vibration mode occur in a low frequency band. Since its sound wave generation characteristics are not influenced by the water pressure, the FFR transducer array is widely used in the deep sea. So FFR has been recognized as a low-frequency active sound source and has received much attention ever since. In order to utilize the FFR transducer array for SONAR systems in military and industrial applications, its equivalent electric circuit model is necessary especially to design the matching circuit between the driving power amplifier and the FFR transducer array. Thus this paper proposes the equivalent electric circuit model of FFR transducer array by using measured values of parameter, and suggest the improved method of parameter identification. Finally it verifies the effectiveness of the proposed circuit model of FFR transducer array by experimental measurements.

Noise Reduction Characteristic of Total Quiet Pavement System (저소음 포장체의 소음저감 특성)

  • Lee, Kwan-Ho;Park, Woo-Jin
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • The rapid economic development induced the massive road constructions, becoming bigger and high-speed of the vehicles. However, it brings lots of social problems, such as air pollutions, traffic noise and vibration. Special concrete block for the base course of asphalt pavement is needed to decrease traffic noise such as tire's explosive and vehicles sound, applying Helmholtz Resonators theory to asphalt pavement. If it is applied to the area where it happens considerable noise such as a junction, the street of a housing complex and a residential street, it is one of alternative methods to solve the social requirements of noise problems. This research examines couple of laboratory tests for the sound absorption effect of the concrete block and the base concrete block for quiet pavement. The specimens, which is fixed hall-size, space, depth as the condition of this research, are analysed of noise reduction effect using different noise levels of vehicles. Judging from the analysis of test results with vehicle noise volume, measurement distance, a form and size of the hall using the base concrete block, the use of special concrete base and quiet asphalt surface showed a good alternative solution for decreasing traffic noise level, from 4dB to 9dB.

Study on the Modal Test for a Turbocharger Wheel Using Vibro-acoustic Responses (진동 방사음을 이용한 터보차져 휠 동특성 시험에 대한 고찰)

  • Lee, Hyeong-Ill;Lee, Dug-Young;Park, Ho-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-37
    • /
    • 2011
  • The modal characteristics of a compressor wheel of an automotive turbocharger have been investigated using an experimental method based on an acoustic frequency response function, p/f(${\omega}$), where p is sound pressure radiated from a structure, and f is impact force. First, a well-defined annular disc with narrow radial slots was examined to check whether the vibro-acoustic test could precisely determine natural quencies and vibration modes of structures showing that the vibro-acoustic test proposed in this paper was comparable to the conventional modal test with an accelerometer and the numerical analysis. The conventional method has been found to be inappropriate for compressor wheel because of additional mass due to the accelerometer and additional damping from the accelerometer cable alter the dynamic responses of the wheel blades. odal characteristics of the wheel have been defined using vibro-acoustic test and verified with the results from another conventional method using a laser vibrometer. Natural quencies and mode shapes of a turbocharger wheel, which can't be precisely obtained with onventional method, could be defined accurately without the additional effects from sensor and cable. Proposed method can be applied to small structures where conventional sensors and cables could generate troubles.

Analysis of Sound Signal by Conducting Particle in Coaxial Cylindrical Electrodes (동축원통 전극내의 파티클에 의한 음향신호 분석)

  • 조국희;권동진;곽희로
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.104-110
    • /
    • 1997
  • In thes paper, the soung signals due to the collisions against the inside wall by conductint particles with in coaxial cylindrical electrodes, and the corresponding frequency spectrum are analyzed and discribed.Thesesound signals were detected and measured using ultrasonic and vibration sensors attached to the exterior of the GIS enclosure. In the case where a particls is bouncing about between these coaxoal electrodes, the sound signal was found to be more than 10[dB] greater than the background noise due to no particlel. Also, in the case where a particle collides and insulation breakdown caesed by the particle made it possible to determine the condition of the insulation inside the sealed GIS. Lastly, the relationship between the peak amplitude and RMS voltage of the measured signal, the diameter and length of the particle was analyzed. Using thes analysis, it is possible to confirm the size of particle.

  • PDF

Performance of selective combining according to channel selection decision method of frequency diversity in underwater frequency selective channel (수중 주파수 선택적 채널에서 주파수 다이버시티의 채널 선택 판정법에 따른 선택 합성법의 성능)

  • Lee, Chaehui;Jeong, Hyunsoo;Park, Kyu-Chil;Park, Jihyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.436-442
    • /
    • 2022
  • In this paper, the performance of the selective combining according to the channel selection decision method of frequency diversity is evaluated in the underwater frequency selective channel. The underwater acoustic channel in the shallow sea has a complex multipath characteristic by combining various environmental factors such as boundary surface reflection and sound wave refraction according to the water temperature layer. In particular, frequency selectivity due to multipath causes energy fluctuation in a communication channel, which reduces SNR (Signal to Noise Ratio) and deteriorates communication performance. In this paper, we applied the frequency diversity technique using multiple channels to secure the communication performance according to the frequency selectivity by multipath. For each channel, 4-FSK (Frequency Shift Keying) and selective combining were applied, the performance was evaluated by applying the maximum value, average value, and majority decision of the signal in order to decide the demodulation channel selection of the selective combining.

Radiation characteristics analysis of Langevin transducer having a rim-fixed circular plate (주위가 고정된 원형 평판을 가진 란주반 트랜스듀서의 방사 특성 해석)

  • Jungsoon Kim;Jiwon Yoon;Moojoon Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.391-399
    • /
    • 2024
  • In order to analyze the distribution of sound fields radiating from a circular plate vibrated by a Langevin transducer, a theoretical analysis model was derived. The boundary conditions of the driving area and fixed boundary area were appropriately applied to the equation of motion of the vibrating plate, which was derived by L. Rayleigh. By calculating the vibration displacement distributed on the surface of the vibrating plate using the derived analysis model and then calculating the sound field formed by the ultrasonic waves radiating from it, it was confirmed that the radiation characteristics vary significantly depending on the area of the vibrating plate. For comparison, a simulation of the same system was performed using the COMSOL program, a finite element method, and showed good agreement with the theoretical calculation results, confirming the effectiveness of the theoretical analysis model derived in thisstudy. It is expected that the theoretical analysis model derived from this study can be used in the design and development of related devices, such as in the ultrasonic chemistry field.

Analyses of the Railway Noise Transmission Characteristics of the Rooms in High-speed Train Stations Depending on Building Types (고속철도의 역사형식에 따른 철도소음의 실내 전달특성 분석)

  • Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.385-393
    • /
    • 2015
  • The speed of train has rapidly been increased in accordance with the developed railway technology. Nowadays, high-speed trains were introduced which has the speed faster than 400 km/h. In Korea, a lots of efforts were undertaken to increase the speed of train faster than 350 km/h, however noise and vibration are still the main problems to solve for realization of the high-speed train. In the case of operation speed faster than 350 km/h, it can be easily presumed that the noise and vibration damages could be increased in the train stations which are close to the passing railway tracks. Thus, the noise in the five different types of high-speed train stations were analyzed including stations built on the ground, underground, under rail, and two types on rail. The present paper predicts noises inside the stations depending on the speed of the passing trains and analyze the noise comparing with noise criteria (NC). Sound insulation performance of each part of buildings was calculated using the transmission noise formula and computer modeling, Finally, a series of processes were introduced to satisfy the aural environment with the optimum interior noise criteria by changing interior finishing materials.