• Title/Summary/Keyword: sound transmission loss

Search Result 314, Processing Time 0.024 seconds

A Study on the Sound Characteristic of Insulation and Manufacturing of Lightweight Concrete for Wall System (벽체용 경량 콘크리트의 제조 및 흡차음 특성에 관한 연구)

  • Kim, Hong-Yong;Kim, Soon-Ho
    • KIEAE Journal
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • This paper deals with the experimental for manufacturing the lightweight buildng materials with portland cement, fly ash, slag, lime, gypsum, and aluminum powder system. Aluminum powder was added an aerating agent. Specific gravity range of lightweight concrete specimens were 0.6~0.9g/cm3. These specimens properties studied by means of specific gravity, compressive strength, absorption coefficient, transmission loss and scanning electron microscopy. Cellular concrete with maximum compressive strength was 41kgf/cm2 by obtained Al=0.05wt.%. Moreover, the aeration lightweight concrete showed excellent sound absorption properties.

Analysis Sound Insulation Performance of a Corrugated Steel Panel Through Modal Density (주름 강판의 모드 밀도에 따른 차음 성능 분석)

  • Kim, Seockhyun;Byeon, Jun Ho;Lee, Joong Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1061-1066
    • /
    • 2016
  • Corrugation of a corrugated panel dramatically increases the bending stiffness per weight. However, corrugated panels show lower sound insulation performance than that of the flat plate having the same weight. Especially, in a particular frequency region, the sound transmission loss significantly decreases. Main reason of the problem is known as the local resonance. A number of local resonance modes occur above a certain frequency band and modal density rapidly increases. In this study, we investigate the relation of the sound transmission loss and the modal density. Finally, we propose a design methodology in terms of the modal density to improve the sound insulation performance of the corrugated panels without weight increase.

A Comparative Study on the Sound Insulation Characteristics of Laminated Glass in Accordance with Material and Composition of Interlayer Film (Interlayer film 재료 및 구성에 따른 접합유리 차음성능 비교)

  • Hong, Jiyoung;Ko, Sangwon;Koh, Hyo-In;Jang, Seungho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.501-505
    • /
    • 2013
  • It is well known that monolithic glass has specific coincidence dip allowing transmittance of noise around the critical frequency. Laminated glass, made of a polyvinyle butyral(PVB) interlayer sandwiched by two panes of glass sheet, has long served for the advantage in noise attenuation properties as well as the safety purpose. More research on the improvement of sound insulation performance is needed, considering much of the noise is still transmitted through the glass. As a preliminary study, authors have made several test specimens, varied combinations of glass and interlayer film, to optimize the acoustic performance. Experimental investigation was carried out to study the sound transmission loss of test specimens in the reverberation chamber by using sound intensity method. Several new applications, instead of the existing PVB laminated glass, show better results in sound transmission loss and low temperature have a bad influence on the acoustic performance.

  • PDF

Analysis of the Sound Insertion Loss of the Enclosure for the Chilled Water Plant in a Ship (선박의 냉수제조기용 인클로우져에 대한 음향 삽입 손실 분석)

  • Han, Hyung-Suk;Jang, Cheon-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.152-157
    • /
    • 2008
  • Enclosure is widely used for the sound insulation in a ship. But it is very difficult to estimate the sound insertion loss for the enclosure because the sound field between the enclosure and the machine is so complex. Therefore, it is usually estimated experimentally. In this research, sound insertion loss of the enclosure is estimated by theory assuming that the sound field in the enclosure is reverberation field. And the results from the theory are compared to those from the experiment.

  • PDF

Effect of Heat Treatment on the Gas Permeability, Sound Absorption Coefficient, and Sound Transmission Loss of Paulownia tomentosa Wood (참오동나무의 열처리가 기체투과성, 흡음율과 음향투과손실에 미치는 영향)

  • KANG, Chun-Won;JANG, Eun-Suk;JANG, Sang-Sik;Cho, Jae-Ik;KIM, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.644-654
    • /
    • 2019
  • In this study, the gas permeability, sound absorption coefficient, and sound transmission loss of the Paulownia tomentosa wood were estimated using capillary flow porometry, transfer function method, and transfer matrix method, respectively. The longitudinal specific permeability constant of the Paulownia tomentosa wood with a thickness of 20 mm was 0.254 for the control sample and 0.279, 0.314, and 0.452 after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$, respectively. The gas permeability was observed to be slightly increased by the heat treatment. The mean sound absorption coefficients of 20-mm thick Paulownia tomentosa log cross-section for the control sample and after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.101, 0.109, 0.096 and 0.106, respectively. Further, the noise reduction coefficients of 20-mm thick Paulownia tomentosa log cross-section of the control sample and after being subjected to heat treatment at temperatures of $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.060, 0.067, 0.062 and 0.071, respectively. The mean of sound transmission loss of the 20-mm thick Paulownia tomentosa log cross-section was approximately 36.93 dB. Furthermore, the gas permeability and sound absorption coefficient of the heat-treated Paulownia tomentosa discs slightly increased depending on the heat treatment temperature; however, the rate of increase was insignificant.

A Study on the Enhancement of the Sound Insulation Performance of Windows through the Laboratory Tests (실험실 실험을 통한 창의 차음성능 개선에 관한 연구)

  • Kim, Sun-Woo;Chung, Jin-Yun;Lee, Ok-Kyun;Jang, Hyun-Choong;Park, Hyeon-Ku;Song, Hyuk
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.307-314
    • /
    • 2001
  • This study aims to provide fundamental data for enhancing the sound insulation performance of windows. For this study, windows composed of various types and thicknesses, were classified into five categories; fixed, single, double, triple and airtight, and then tested. In order to analyze their sound insulation characteristics and performances. test results were rated using methods such as D, STC, Ts and arithmetical mean. It was found that the sound insulation performance of windows is affected due to their type rather than the thickness of the glass. It was also found that when gap between the inner and outer frames was filled with caulking material, the sound transmission loss at high frequency bands was greatly improved. Therefore, the sound insulation performance of windows would be enhanced by minimizing the gap between frames.

  • PDF

Sound Insulation Performance of the Side Layered Panels in the Next Generation High Speed Train (차세대 고속철도 차량 측면 적층재의 차음성능)

  • Lee, Joong-Hyeok;Lee, Ho-Jin;Park, In-Seok;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.457-462
    • /
    • 2011
  • The sidewall of the HEMU-400x consists of two parts. One is the multi-layered structure including aluminium extruded panel and the other is the double glazed window. When the train runs in a tunnel, the equivalent sound insulation performance of the side wall significantly influences the internal noise levels. In aspect of the sound insulation strategy, it is important to make two parts have similar performance. In this study, the intensity sound transmission loss (ITL) is measured on the specimens of the two parts. Mass law deviation (MLD) is considered in order to compare the sound insulation performance of the two parts in respect of the weight. Contribution of each part to the sound insulation is analyzed and the sound insulation strategy is investigated to reduce the interior noise.

  • PDF

Sound Insulation Strategy of the Side Panels in a Tilting Train (틸팅열차 측면재의 차음 전략)

  • Kim, Seockhyun;Seo, Taegun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.33-38
    • /
    • 2011
  • In an express tilting train, side wall insulating the noise from the exterior sound source consists of two parts. One is the layered composite panel including aluminum honeycomb, glass wool and nomex honeycomb. The other is the double glazed window. In this study, sound insulation performance of the two parts is investigated by mass law and experiment. Based on ASTM E2249-02, the intensity sound transmission loss (TL) is measured on the specimens of the two parts. Mass law deviation (MLD) is considered in order to compare the sound insulation performance in respect of weight. Contribution of each part to the sound insulation is analyzed and the sound insulation strategy for the interior noise reduction is investigated.

  • PDF

Sound Absorption Rate and Sound Transmission Loss of Wood Bark Particle (목재수피 파티클의 흡음율과 음향투과손실)

  • Kang, Chun-Won;Jang, Eun-Suk;Jang, Sang-Sik;Kang, Ho-Yang;Kang, Seog-Goo;Oh, Se-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.425-441
    • /
    • 2019
  • In this study, sound absorption capability and sound transmission loss of several kinds of target densities and thickness for six species of wood bark particle were estimated by the transfer function and transfer matrix methods. Resultantly, the mean sound absorption coefficient of a 100-mm thick Hinoki wood bark particle mat was 0.90 in the frequency range of 100-6400 Hz, whereas the mean sound absorption rate of a 50-mm thick Hinoki wood bark particle mat was 0.84 in the same frequency range. Particularly, at a thickness of 100 mm, it reached almost up to 100% in the frequency range of 1 KHz. The sound transmission losses of 100-mm thick Hinoki wood bark particle mat with a target density of 0.16 at 500 and 1000 Hz were 15.30 and 15.73 dB, respectively. When a 10-mm thick plywood was attached to the back of the wood particle mat, the sound transmission losses was increased by 20-30 dB. Wood bark can be used as an acoustical material owing to its high sound absorption rate and transmission loss.

Muffler Design Using Transmission Loss Prediction Considering Heat and Flow (열과 유동을 고려한 음장해석을 통한 머플러의 설계)

  • Kim, Hyunsu;Kang, Sang-Kyu;Lim, Yun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.600-605
    • /
    • 2014
  • Two mufflers for a large-size sedan are suggested aiming (1) sporty-sound and (2) quiet-sound as well as both satisfying low back-pressure and low manufacturing cost. Transmission loss prediction considering heat and flow may increase the accuracy and reduce the development cost in muffler design; thus, GT-power prediction considering heat, flow, and acoustics is utilized. By understanding the fundamentals of flow-acoustic theory in small orifice(hole), an effective muffler design concept is proposed. Vehicle tests show the consistence with predictions for sound; also a back-pressure test bench confirms the advantage in pressure drop for both suggested mufflers. Those suggested mufflers also have advantages in manufacturing cost due to simplicity of the design.